光学学报, 2016, 36 (3): 0301001, 网络出版: 2016-01-25   

强背景光下可见光大气湍流信道建模及分集接收技术

Turbulence Channel Modeling of Visible Light Communication under Strong Background Noise and Diversity Receiving Technologies
作者单位
复旦大学通信科学与工程系电磁波信息科学教育部重点实验室, 上海 200433
摘要
可见光大气传输系统面临的主要问题在于由大气湍流引起的光强闪烁和来自日光及其他照明设备的强背景光干扰,为了克服大气湍流造成的信道衰落效应及强背景光带来的噪声干扰问题,对室外可见光通信(VLC)强背景光大气湍流信道进行了建模。在接收端采用分集接收技术,在相同的发射功率下提高系统误码率(BER)性能。构建了在强背景光大气湍流信道模型下基于强度检测脉冲位置调制(PPM)方式的室外长距离可见光分集接收系统模型,在几十微瓦功率背景光噪声下,实现了800 Mb/s PPM 信号的仿真系统传输。基于此系统分别研究对比了最大比合并(MRC)、等增益合并(EGC)、选择性合并(SC)3 种分集合并方式的误码率性能。结果表明,在相同的发射功率下,误码率性能提升最大的是MRC,其次是EGC,SC 最差。以7%前向纠错码(FEC)误码门限作为参考,MRC 能显著降低对LED 发射功率的要求,并且随着分集支路个数的增多,分集效果越好。
Abstract
The scintillation caused by the atmosphere turbulence and strong background noise from sunlight and other lighting equipment are two main problems in visible light communication (VLC) atmosphere transmission system. In order to overcome the channel fading effect caused by the atmosphere turbulence and the noise interference caused by the strong background light, VLC atmosphere channel with strong background noise is modeled. Diversity receiving technologies are utilized to improve the bit error rate (BER) performance of the system at the same transmitting power. According to the channel model, outdoor long-distance VLC system based on intensity detection pulse position modulation (PPM) in turbulence atmosphere channel using diversity receiving technologies is finally set up. In our simulation, the system bandwidth is 400 MHz and bit rate is 800 Mb/s. The BER performances of three diversity receiving technologies: maximal ratio combing (MRC), equal gain combing (EGC), selection combing (SC) are also compared. The results show that under the same transmitting power, the improvement of BER performance by MRC is the best, followed by EGC and SC is poor. Taking 7% forward error correction(FEC) as the BER threshold, the required LED transmitting power is greatly decreased with MRC. Furthermore, with the increase of the number of diversity branches, the BER performance is better.
参考文献

[1] Wang Y, Huang X, Tao L, et al.. 45-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization[J]. Optics Express, 2015, 23(10): 13626.

[2] Wei C C, Wu F M, Chen Z Y, et al.. Indoor VLC system with multiple LEDs of different path lengths employing space-time block-coded DMT/CAP modulation[J]. Journal of Optical Communications & Networking IEEE/OSA, 2015, 7(3): A459-A466.

[3] Lourenco N, Terra D, Kumar N, et al.. Visible light communication system for outdoor applications[C]. Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on IEEE, 2012: 1-6.

[4] 刘建余, 于立娟. 短距离室外可见光数字传输系统研究[J]. 科学技术与工程, 2013, (3): 744-748.

    Liu Jianyu, Yu Lijuan. Research on short distance outdoor visible light digital transmission system[J]. Science Technology and Engineering, 2013, (3): 744-748.

[5] Kiasaleh K. Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence[J]. IEEE Transactions on Communications, 2005, 53(9): 1455-1461.

[6] 陈丹, 柯熙政, 李建勋. 湍流信道下无线光副载波盲均衡算法研究[J]. 光子学报, 2013, 42(9): 1025-1030.

    Chen Dan, Ke Xizheng, Li Jianxun. Blind equalization algorithm of wireless optical communication using subcarrier modulation over turbulence channel[J]. Acta Photonica Sinica, 2013, 42(9): 1025-1030.

[7] 宗康, 朱江. 基于Gamma-Gamma信道模型的ROFSO 通信系统性能分析[J]. 半导体光电, 2014, 35(4): 682-686.

    Zong Kang, Zhu Jiang. Performance analysis of ROFSO systems based on Gamma- Gamma atmospheric turbulence model[J]. Semiconductor Optoelectronics, 2014, 35(4): 682-686.

[8] Gappmair W, Muhammad S S. Error performance of PPM/poisson channels in turbulent atmosphere with Gamma-Gamma distribution [J]. Electronics Letters, 2007, 43(16): 880-882.

[9] 郭强. 改进的T-PPM 编码在大气弱湍流下的性能分析[J]. 激光与光电子学进展, 2014, 51(8): 080605.

    Guo Qiang. Performance analysis of improved T-PPM technology on atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2014, 51(8): 080605.

[10] Berrou C, Glavieux A. Near optimum error correcting coding and decoding: Turbo-codes[J]. IEEE Transactions on Communications, 1996, 44(10): 1261-1271.

[11] Bayaki E, Schober R, Mallik R K. Performance analysis of MIMO free-space optical systems in Gamma-Gamma fading[J]. IEEE Transactions on Communications, 2009, 57(11): 3415-3424.

[12] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series, and Products(8th Editon)[M]. Amsterdam: Elsevier, 2014: 1109-1114.

[13] Al-Habash M A, Andrews L C, Philips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 2001, 40(8): 1554-1562.

[14] Uysal M, Li J, Yu M. Error rate performance analysis of coded free-space optical links over Gamma-Gamma atmospheric turbulence channels[J]. IEEE Transactions on Wireless Communications, 2006, 5(6): 1229-1233.

赵嘉琦, 许银帆, 李洁慧, 王一光, 迟楠. 强背景光下可见光大气湍流信道建模及分集接收技术[J]. 光学学报, 2016, 36(3): 0301001. Zhao Jiaqi, Xu Yinfan, Li Jiehui, Wang Yiguang, Chi Nan. Turbulence Channel Modeling of Visible Light Communication under Strong Background Noise and Diversity Receiving Technologies[J]. Acta Optica Sinica, 2016, 36(3): 0301001.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!