光子学报, 2017, 46 (9): 0930004, 网络出版: 2017-10-16  

基于光纤环形腔衰荡光谱的偏振测量

Polarization Measurement Based on Fiber Loop Cavity Ring-down Spectroscopy
作者单位
河南师范大学 电子与电气工程学院,河南 新乡 453007
摘要
针对传统偏振测量较难同时实现高灵敏度和较好稳定性的问题,提出了一种采用光纤环形腔衰荡光谱技术进行偏振测量的方法,并进行了实验证明.对比分析了掺铒光纤放大器放置在环形腔的内部和外部对脉冲曲线和脉冲数量的影响.在掺铒光纤放大器中使用长度为2 m的低增益和低噪声掺铒光纤来减少波形失真并补偿环形腔的内部衰减.利用光纤环形腔衰荡光谱系统对偏振角进行测量,通过记录分析环形腔中光脉冲的衰减时间得到偏振角的变化.结果表明:偏振角和衰减时间在0°~90°的范围内满足良好的线性关系,光纤环形腔衰荡光谱系统的灵敏度和拟合曲线的相关系数分别为4.05 μs/°和0.999 6,最大灵敏度误差为0.027 3 μs/°.通过10次重复实验,选取六组数据进行拟合得到系统的平均再现性误差为0.030 8,重复性良好,可用于旋光溶液测量,也为光纤径向应力双折射特性和光纤激光器的偏振态测量提供了参考.
Abstract
A polarization measurement method employing a Fiber Loop Ring-Down Spectroscopy (FLRDS) system is proposed and experimentally demonstrated. The influence of an Erbium-Doped Fiber Amplifier (EDFA) placed inside and outside the fiber ring on the pulse curve and the number of pulse peaks in the annular cavity is analyzed. A length of 2 m low-gain and low-noise erbium-doped fiber in EDFA is used to reduce waveform distortion and compensate for the attenuation of the cavity. Measurement of polarization angle θ was performed with the FLRDS system, and the change of θ is gained by recording the ring-down time τ of light pulse in the fiber loop. Results indicate that a good linear relationship is met between θ and τ in the range of 0°~ 90°. The sensitivity of the FLRDS system and the correlation coefficient of the fitted curve are 4.05 μs/° and 0.999 6, respectively. The maximum sensitivity error is 0.027 3. Through ten repeated experiments, six sets of data were selected to fit, and the average reproducibility error of the system was 0.030 8, and the repeatability was good, so it can be used in optical rotatory solution measurement, and also provides a reference for fiber radial stress birefringence and polarization state measurement of fiber lasers.
参考文献

[1] TANG D, YANG D, JIANG Y, et al. Fiber loop ring-down optical fiber grating gas pressure sensor[J]. Optics & Lasers in Engineering, 2010, 48(12): 1262-1265.

[2] WAECHTER H, MUNZKE D, JANG A, et al. Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy[J]. Analytical Chemistry, 2011, 83(7): 2719-25.

[3] JIANG M, ZHANG W, ZHANG Q, et al. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy[J]. Optics Communications, 2010, 283(2): 249-253.

[4] ZHOU X, WANG X, CHEN K, et al. Melamine detection using phase-shift fiber-loop ring-down spectroscopy[J]. Optics Communications, 2014, 333: 105-108.

[5] ZHAO Y, BAI L, WANG Q. Gas concentration sensor based on fiber loop ring-down spectroscopy[J]. Optics Communications, 2013, 309(22): 328-332.

[6] ANDREWS N L P, LITMAN J, STROH D, et al. Near-infrared absorption detection in picolitre liquid volumes using amplified fiber loop ring-down detection[J]. Optical Fiber Technology, 2013, 19(6): 822-827.

[7] VALLANCE C. Innovations in Cavity Ringdown Spectroscopy[J]. Cheminform, 2005, 36(43): 867-874.

[8] BESCHERER K, BARNES J A, LOOCK H P. Absorption measurements in liquid core waveguides using cavity ring-down spectroscopy[J]. Analytical Chemistry, 2013, 85(9): 4328-34.

[9] YE F, ZHOU C, QI B, et al. Continuous-wave cavity ring-down evanescent-field sensing with a broadband source based on frequency-shifted interferometry[J]. Sensors & Actuators B Chemical, 2013, 184(8): 150-155.

[10] SILVA S O, MAGALHAES R, MARQUES M B, et al. New advances in fiber cavity ring-down technology[J]. Optics & Laser Technology, 2016, 78: 115-119.

[11] WANG Q, LIU X, XIA J, et al. A novel long-tail fiber current sensor based on fiber loop ring-down spectroscopy and Fabry-Perot cavity filled with magnetic fluid[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(7): 2005-2011.

[12] NI N, CHAN C C, WONG W C, et al. Cavity ring-down long period grating pressure sensor[J]. Sensors & Actuators A Physical, 2010, 158(2): 207-211.

[13] JIANG Y, ZHAO J, YANG D, et al. High-sensitivity pressure sensors based on mechanically induced long-period fiber gratings and fiber loop ring-down[J]. Optics Communications, 2010, 283(20): 3945-3948.

[14] 张雪霞, 葛廷武, 丁星, 等. 分布式抽运连续光纤激光器研究[J]. 发光学报, 2016,37(9): 1071-1075.

    ZHANG Xue-xia, GE Ting-wu, DING Xing, et al. Study of continuous fiber laser with distributed pump structure[J]. Chinese Journal of Luminescence, 2016, 37(9): 1071-1075.

[15] 陈国霖,戴福隆,周辛庚. 应用磁光效应测量高双折射光纤中应力引起的双折射[J]. 实验力学, 2002, 17(s1): 153-156.

    CHEN G L, DAI F L, ZHOU X G. Magnetic light domino effect applied to measuring double refraction caused by stress in high double refraction optic fiber[J]. Journal of Experimental Mechanics, 2002, 17: 153-156.

[16] 杨磊,余有龙. 一种利用偏振控制器测量径向受力光纤双折射的方法[J]. 电脑知识与技术,2010, 6(4): 2534-2535.

    YANG Lei, YU You-long. A new method to measure the birefringence of the single-mode fiber which is side-pressed using polarization controller[J]. Computer Knowledge & Technology, 2010, 6(4): 2534-2535.

[17] 李小甫,余海湖,黄华,等. 双折射下啁啾光栅径向局部受压特性研究[J]. 武汉理工大学学报,2011, 33(1): 139-141.

    LI Xiao-fu, YU Hai-hu, HUANG Hua, et al. Research on reflection spectra of locally pressed chirped grating of diametric force under birefingence[J]. Journal of Wuhan University of Technology, 2011, 33(1): 139-138.

[18] 苏洋,徐俊华,张宝富,等. 线双折射传感光栅中的传输光偏振态分析[J]. 应用光学,2011, 32(3): 512-517.

    SU Yang, XU Jun-hua, ZHANG B F, et al. Polarization states of transmitted light in linear birefringence gratings[J]. Journal of Applied Optics, 2011, 32(3): 512-517.

[19] 黄伟溪,陈哲,隋展,等. 熊猫光纤热双折射效应光纤偏振控制器研究[J]. 红外与激光工程,2010, 39(6): 1137-1142.

    HUANG Wei-xi, CHEN Zhe, SUI Zhan, et al. Fiber polarization controller based on thermal birefringent effect of PANDA fiber[J]. Infrared & Laser Engineering, 2010, 39(6):1137-1142.

[20] QIAN X, ZHAO Y, ZHANG Y N, et al. Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique[J]. Sensors & Actuators B Chemical, 2016, 228: 665-672.

[21] LIU K, LIU T G, PENG G D, et al. Theoretical investigation of an optical fiber amplifier loop for intra-cavity and ring-down cavity gas sensing[J]. Sensors & Actuators B Chemical, 2010, 146(1): 116-121.

[22] MAGAKHAES R, SILVA S O, FRAZAO O. Fiber ring resonator using a cavity ring-down interrogation technique for curvature sensing[J]. Microwave & Optical Technology Letters, 2016, 58(2): 267-270.

[23] JIANG Y, JIANG W, JIANG B, et al. Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber[J]. Optics Communications, 2015, 351: 30-34.

[24] ITTUARAH J V, SIDHIK S, GANGOPADHYAY T K. Refractometry using evanescent field based fiber loop ringdown spectroscopy[J]. Sensors & Actuators A Physical, 2015, 223: 61-66.

[25] SILVA S, MAGAKHAES R, PEREZ-HERRERA R A, et al. Fiber cavity ring down and gain amplification effect[J]. Photonic Sensors, 2016, 6(4): 324-327.

芦恒, 王芳, 王旭, 刘玉芳. 基于光纤环形腔衰荡光谱的偏振测量[J]. 光子学报, 2017, 46(9): 0930004. LU Heng, WANG Xu, WANG Fang, LIU Yu-fang. Polarization Measurement Based on Fiber Loop Cavity Ring-down Spectroscopy[J]. ACTA PHOTONICA SINICA, 2017, 46(9): 0930004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!