光子学报, 2017, 46 (4): 0419001, 网络出版: 2017-05-03  

无周期光学超晶格中误差函数研究

Research on the Relative Tolerance Function in Non-periodic Optical Superlattice
作者单位
1 晋中学院 信息技术与工程学院, 山西 晋中 030600
2 首都师范大学 物理系 理论物理中心, 北京 100048
摘要
利用非线性共轭梯度算法设计了无周期光学超晶格结构, 研究了文献[12]提出的误差函数在该结构中的适用性.研究结果表明:误差函数能够很好地适用于无周期光学超晶格结构, 且该结构比文献[12]中所用的非周期光学超晶格更具有一般性; 当u′2(xn)和n保持很好的线性关系时, 无周期光学超晶格结构中计算所得的误差函数曲线与文献[12]中的误差函数曲线几乎是重合的, 说明了在无周期光学超晶格中达到了很好的准相位匹配.通过在样品中引入随机误差进一步研究了相位失配情况下误差函数在无周期光学超晶格结构中的适用性, 结果表明:相位失配时无周期光学超晶格结构中计算所得的误差函数曲线与标准曲线是有偏离的, 且相位失配程度越大, 偏离也越大; 对于一些误差函数曲线与标准曲线偏离不大的情况, 误差函数仍可近似地用来估计无泵浦损耗近似的适用范围.
Abstract
The Non-periodic Optical Superlattice (NOS) structure was designed by using the the Nonlinear Conjugate-Gradient(NCG) algorithm, and the applicability in the NOS structure of the relative tolerance function mentioned in Ref.[12] was studied. The results show that, this relative tolerance function can apply to the NOS structure well, and the NOS structure is more general to compare with the Aperiodic Optical Super-lattice(AOS) which is used in Ref. [12]. When u′2(xn) and n keep a good linear relationship, the relative tolerance function curve calculated in the NOS structure is nearly coincident with that mentioned in Ref.[12], which shows that a Quasi-Phase-Matching(QPM) is well satisfied in the NOS structure. The applicability in the NOS structure of the relative tolerance function which is under the case of phase mismatching was also furtherly investigated by introducing the random error in the sample. The results show that, the relative tolerance function curve calculated in the NOS structure is not coincident with the standard curve under the case of phase mismatching, and as the mismatching degree increases, the relative tolerance function curves exhibit a larger deviation from the standard one. The applicable scope of Un-depleted Pump Approximation (UPA) can be approximately calculated by using the relative tolerance function when this deviation is not large.
参考文献

[1] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interaction between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939.

[2] ZHU Shi-ning, ZHU Yong-yuan, QIN Yi-qiang, et al. Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3[J]. Physics Review Letters, 1997, 78(14): 2752-2755.

[3] ZHU Yong-yuan, QIN Yi-qiang, ZHANG Chao, et al. Nolinear optical characterization of the generalized Fibonacci optical superlattices and their ‘isotopes’[J]. Journal of Physics, 2000, 12(50): 10639-10645.

[4] LIFSHITA R, ARIE A, BAHABAD A. Photonic quasi crystals for nonlinear optical frequency conversion[J]. Physics Review Letters, 2005, 95(13): 133901.

[5] CHEN Xian-feng, WU Fei, ZENG Xian-long, et al. Multiple quasi-phase-matching in a nonperiodic domain-inverted optical superlattice[J]. Physics Review A, 2004, 69(1): 013818.

[6] ARBORE M A, MARCO O, FEJER M M. Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching gratings[J]. Optics Letters, 1997, 22(12): 865-867.

[7] LEE Y W, FAN F C, HUANG Y C, et al. Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niogate[J]. Optics Letters, 2002, 27(24): 2191-2193.

[8] GU Xi, CHEN Xian-feng, CHEN Yu-ping, et al. Narrowband multiple wavelengths filter in aperiodic optical superlattice[J]. Optics Communications, 2004, 237(1): 53-58.

[9] CHEN Li-jun, CHEN Xian-feng, CHEN Yu-ping, et al. Multiple quasi-phase-matching in two-dimentional domain-inverted aperiodic optical superlattice[J]. Physics Letters A, 2006, 349(6): 484-487.

[10] VIDAL X, MARTORED J. Generation of light in media with a random distribution of nonlinear domains[J]. Physics Review Letters, 2006, 97(1): 013902.

[11] FISCHER R, SALTIEL S M, NESSHEV D N, et al. Broadband femtosecond frequency doubling in random media[J]. Applied Physics Letters, 2006, 89(19): 191105.

[12] ZHAO Li-ming, YUE Gue-kuan, ZHOU Yun-song, et al. Effect of pump depletion on second harmonic generation in multiple quasi-phase-matching gratings[J]. Optics Express, 2013, 21(15): 17592-17601.

[13] ZHAO Li-ming, YUE Gue-kuan, ZHOU Yun-song, et al. Effect of the pump depletion itself on the quasi-phase-matching for second-harmonic generation[J]. Europhysics Letters, 2012, 99(3): 34002.

[14] ZHAO Li-ming, YUE Gue-kuan, ZHOU Yun-song, et al. Effect of the pump depletion on the quasi-phase-matching for χ2 nonlinearities[J]. Optics Communication, 2015, 347: 92-97.

[15] RUSTAGI K C, MEHENDALE, MEENAKSHI S. Optical frequency conversion in quasi-phase-matched stacks of nonlinear crystals[J]. IEEE Journal of Quantum Electronics, 1982, 18(6): 1029-1041.

[16] ZHAO Li-ming, GU Ben-yuan, YANG Guo-zhen, et al. Optimal design of aperiodic optical superlattices for achieving parametric amplification of second harmonic generation with consideration of te depletion of pumping light power[J]. Journal of Nonlinear Optical Physics&Materials, 2005, 14(1): 115-131.

[17] SAPAEV U K. Optimum formation of the response of aperiodic nonlinear crystals in the process of second harmonic generation[J]. Optics and Spectroscopy, 2007, 102(6): 939-943.

[18] BAO Gang, DOBSON D C. Second harmonic generation in nonlinear optical films[J]. Journal of Mathematics Physics, 1994, 35(4): 1622-1633.

[19] XIA Jin-an. Enhancement of second harmonic generation in one-dimensional nonlinear photonic-crystal microcavities[J].Optics Express, 2009, 17(22): 20069-20077.

[20] REN Ming-liang, LI Zhi-yuan. Exact iterative solution of second harmonic generation in quasi-phase-matched structures[J]. Optics Express, 2010, 18(7): 7288-7299.

[21] BUFFA R, CAVALIERI S. Optimal control of type I second-harmonic generation with ultrashort laser pulses[J]. Journal of the Optical Society of America B, 2000, 17(11): 1901-1905.

[22] SAPAEV U K, ASSANTO G. Femtosecond pulse synthesis by efficient second-harmonic generationin engineered quasi phase matching gratings[J]. Optics Express, 2007, 15(12): 7448-7457.

[23] AVRIEL M. Programming: analysis and methods[M]. Englewoos cliffs, NJ: Prentice-Hall, 1976.

[24] DMITRIEV V G, GURAZDYAN G G, NIKOGOSYAN D N. Handbook of nonlinear optical crystals[M]. Berlin: Spring, 1997.

[25] ZHAO Li-ming, YUE Gue-kuan, ZHOU Yun-song, et al. A promising nonlinear conjugate-gradient method proposed to design nonlinear domains with a disordered distribution[J]. Modern Physics Letters B, 2015, 29(19): 1550030.

张丽娟, 赵丽明. 无周期光学超晶格中误差函数研究[J]. 光子学报, 2017, 46(4): 0419001. ZHANG Li-juan, ZHAO Li-ming. Research on the Relative Tolerance Function in Non-periodic Optical Superlattice[J]. ACTA PHOTONICA SINICA, 2017, 46(4): 0419001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!