激光与光电子学进展, 2017, 54 (10): 101401, 网络出版: 2017-10-09   

激光诱导氧化铝陶瓷刀具的表面浸润性 下载: 584次

Surface Wettability of Laser-Induced Al2O3 Ceramic Tools
作者单位
湖北工业大学机械工程学院, 湖北 武汉 430068
摘要
利用飞秒激光处理陶瓷刀具表面, 研究了脉冲能量和光斑重合度对其表面浸润性的影响。通过测定激光处理后的氧化铝陶瓷刀片表面的接触角来观察其浸润性。实验结果表明, 飞秒激光可以改变陶瓷材料表面的润湿性能, 通过选择合适的激光能量密度和光斑重合度, 可以制备出超亲水表面和超亲水基切削液的表面。水基切削液在激光处理过的表面上的润湿速度与接触角呈指数衰减关系。
Abstract
The effects of pulse energy and spot overlap ratio on the wettability of ceramic tools processed by femtosecond lasers are investigated. The wettability of the alumina ceramic tools after laser treatment is investigated by measuring the contact angles. The experimental results show that the femtosecond laser can change the wettability of ceramic material surfaces. The superhydrophilic surfaces and the superhydrophilic-based cutting fluid surfaces can be prepared if suitable laser energy density and spot overlap ratio are chosen. The wetting speed of water based cutting fluid on the laser-processed surfaces is exponentially decaying with the contact angle.
参考文献

[1] Tian X, Zhao J, Wang Z, et al. Design and fabrication of Si3N4/(W, Ti)C graded nano-composite ceramic tool materials[J]. Ceramics International, 2016, 42(12):13497-13506.

[2] 李健, 季凌飞, 胡炎, 等. 532 nm激光铣削Y-TZP陶瓷实验研究[J]. 中国激光, 2015, 42(8): 0806002.

    Li Jian, Ji Lingfei, Hu Yan, et al. Experimental study on milling of Y-TZP ceramic by 532 nm laser[J]. Chinese J Lasers, 2015, 42(8): 0806002.

[3] Wang B, Liu Z. Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel[J]. International Journal of Refractory Metals & Hard Materials, 2016, 55: 24-32.

[4] Cheng Y, Hu H, Sun S, et al. Experimental study on the cutting performance of microwave sintered Al2O3/TiC ceramic tool in the machining of hardened steel[J]. International Journal of Refractory Metals & Hard Materials, 2015, 55: 39-46.

[5] Yin Z, Yuan J, Wang Z, et al. Preparation and properties of an Al2O3/Ti (C, N) micro-nano-composite ceramic tool material by microwave sintering[J]. Ceramics International, 2016, 42(3): 4099-4106.

[6] Zhao G, Huang C, He N, et al. Preparation and cutting performance of reactively hot pressed TiB2-SiC ceramic tool when machining Invar36 alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9/10/11/12): 2679-2688.

[7] Liu W, Li A, Wu H, et al. Effects of bias voltage on microstructure, mechanical properties, and wear mechanism of novel quaternary (Ti, Al, Zr) N coating on the surface of silicon nitride ceramic cutting tool[J]. Ceramics International, 2016, 42(15): 17693-17697.

[8] Chen H, Xu C, Xiao G, et al. Investigation of Al2O3/TiC ceramic cutting tool materials with the addition of SiC-coated h-BN: preparation, mechanical properties, microstructure and wear resistance[J]. International Journal of Materials Research, 2016, 107(8): 735-740.

[9] Xing Y, Deng J, Feng X, et al. Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction[J]. Materials & Design, 2013, 52(24): 234-245.

[10] Tshabalala L C, Pityana S. Surface texturing of Si3N4-SiC ceramic tool components by pulsed laser machining[J]. Surface and Coatings Technology, 2016, 289: 52-60.

[11] Etsion I. State of the art in laser surface texturing[J]. Journal of Tribology, 2004, 127(1): 761-762.

[12] Kümmel J, Braun D, Gibmeier J, et al. Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation[J]. Journal of Materials Processing Technology, 2015, 215: 62-70.

[13] Gakovic' B, Petrovic' S, Albu C, et al. Precise femtosecond laser crater fabrication in hard nanolayered AlTiN/TiN coating on steel substrate[J]. Optics & Laser Technology, 2017, 89: 200-207.

[14] Li L, Hong M, Schmidt M, et al. Laser nano-manufacturing-state of the art and challenges[J]. CIRP Annals-Manufacturing Technology, 2011, 60(2): 735-755.

[15] Perrie Walter, Edwardson S P, Fearon E, et al. Diffractive multi-beam ultra-fast laser micro-processing using a spatial light modulator(invited paper)[J]. Chinese J Lasers, 2009, 36(12): 3093-3115.

[16] 吴东江, 周思雨, 马广义, 等. 秒激光精密减薄石英玻璃凹槽实验[J]. 中国激光, 2015, 42(3): 0303009.

    Wu Dongjiang, Zhou Siyu, Ma Guangyi, et al. Experiment of quartz glass flute precise thinning by femtosecond laser[J]. Chinese J Lasers, 2015, 42(3): 0303009.

[17] 何飞, 程亚. 飞秒激光微加工: 激光精密加工领域的新前沿[J]. 中国激光, 2007, 34(5): 595-622.

    He Fei, Cheng Ya. Femtosecond laser micromachining: frontier in laser precision micromachining[J]. Chinese J Lasers, 2007, 34(5): 595-622.

[18] Dunn A, Carstensen J V, Wlodarczyk K L, et al. Nanosecond laser texturing for high friction applications[J]. Optics & Lasers in Engineering, 2014, 62(6): 9-16.

[19] Su B, Ye T, Lei J. Bioinspired Interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748.

[20] 刘顿, 伍义刚, 胡勇涛, 等. 皮秒激光制备铝基超疏水表面[J]. 激光与光电子学进展, 2016, 53(10): 101408.

    Liu Dun, Wu Yigang, Hu Yongtao, et al. Fabrication of super-hydrophobic aluminum surface by picosecond laser[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101408.

[21] Cassie A B D. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551.

杨奇彪, 肖晨光, 陈中培, 陈列, 娄德元, 陶青, 郑重, 翟中生, 刘顿, Bennett Peter. 激光诱导氧化铝陶瓷刀具的表面浸润性[J]. 激光与光电子学进展, 2017, 54(10): 101401. Yang Qibiao, Xiao Chenguang, Chen Zhongpei, Chen Lie, Lou Deyuan, Tao Qing, Zhen Zhong, Zhai Zhongsheng, Liu Dun, Bennett Peter. Surface Wettability of Laser-Induced Al2O3 Ceramic Tools[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101401.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!