中国光学, 2016, 9 (2): 249, 网络出版: 2016-10-19  

基于TiO2纳米粒子薄膜的低阈值随机激光器的动力学研究

Dynamics of low-threshold random laser based on TiO2 nanoparticle films
作者单位
吉林大学 电子科学与工程学院 集成光电子学国家重点实验室,吉林 长春130012
摘要
本文利用共轭聚合物(MEH-PPV)覆盖TiO2纳米粒子薄膜制作随机激光器。随机TiO2纳米粒子薄膜的激光辐射阈值比平面MEH-PPV薄膜的放大自发辐射阈值缩小了9倍。这是由于TiO2纳米粒子诱导的多重散射造成的。进一步的飞秒荧光上转换实验表明,随机激光器中,光在增益介质里的停留时间有所增加,这直接证实了光在随机激光器结构中的多重散射引起光的传播路径增加。因此,这会促进更多的光发生辐射,从而降低随机激光器的阈值。
Abstract
We have prepared random lasers with conjugated polymer(MEH-PPV) coated on TiO2 nanoparticle films. The threshold of the lasing based on random TiO2 nanoparticle film is significantly reduced by a factor of 9 in comparison with the amplified spontaneous emission(ASE) threshold of the flat MEH-PPV film, which is caused by multiple scattering induced by TiO2 nanoparticles. Further investigation by femtosecond fluorescence up-conversion experiment reveals that the dwell time of light inside the gain medium is increased in the random laser device, which directly confirms that light travels longer path due to the multiple scattering in the random structure. So it stimulates the emission of more light and the threshold of the random laser is lowered.
参考文献

[1] DENG C M,HE Q G,HE C,et al.. Conjugated polymer-titania nanoparticle hybrid films: random lasing action and ultrasensitive detection of explosive vapors[J]. J. Phys. Chem. B,2010,114:4725.

[2] LAWANDY N M,BALACHANDRAN R M,GOMES A S L,et al.. Laser action in strongly scattering media[J]. Nature,1994,368:436.

[3] WIERSMA D. The smallest random laser[J]. Nature,2000,406:132.

[4] 李志全,赵晶晶,孟晓云,等.基于波导、金和氧化锌的随机激光器的研究[J].发光学报,2015,36(5):557-562.

    LI ZH Q,ZHAO J J,MENG X Y,et al.. Research of random laser based on waveguide, Au and ZnO[J]. Chinese J. Luminescence,2015,36(5):557-562.(in Chinese)

[5] TULEK A,POLSON R C,VARDENY Z V. Naturally occurring resonators in random lasing of π-conjugated polymer films[J]. Nat. Phys.,2010,6:303.

[6] WIERSMA D S. The physics and applications of random lasers[J]. Nat. Phys.,2008,4:359.

[7] CAO H. Random lasers development,features and applications[J]. Opt. Photon. News,2005,16:24.

[8] ZHAI T R,ZHANG X P,PANG Z G,et al.. Random laser based on waveguided plasmonic gain channels[J]. Nano Lett.,2011,11:4295.

[9] CAO H,XU J Y,SEELIG E W,et al.. Microlasers made of disordered media[J]. Appl. Phys. Lett.,2000,76:2997.

[10] SUN T,QIU Z R,SU H M,ZHANG X D,et al.. Dynamics of random laser and coherent backscattering of light from ZnO amplifying random medium[J]. Appl. Phys. Lett.,2007,91:241110.

[11] GARC A-REVILLA S,FERN NDEZ J,ILLARRAMENDI M A,et al.. Ultrafast random laser emission in a dye-doped silica gel powder[J]. Opt. Express,2008,16:12251.

[12] POLSON R C,CHIPOULINE A,VARDENY Z V. Random lasing in p-conjugated films and infiltrated opals[J]. Adv. Mater.,2001,13:760.

[13] ANNI M. A flexible organic random laser based on poly(9,9-dioctylfluorene) deposited on a surface corrugated poly-phthalate-carbonate substrate[J]. Appl. Phys. Lett.,2011,98:253304.

[14] FROLOV S V,VARDENY Z V,YOSHINO K,et al.. Stimulated emission in high-gain organic media[J]. Phys. Rev. B,1999,59:R5284.

[15] LI Z Q,DU Y Y,SUN Y C,et al.. Lasing emission of waveguide random scattering system[J]. Chin. J. Lumin.,2013,34:617.

[16] LI Z Q,DU Y Y,SUN Y C,et al.. Research of random laser based on waveguide, Au and ZnO[J]. Chin. J. Lumin.,2015,36:557.

[17] MCGEHEE M D,HEEGER A J. Semiconducting(Conjugated) polymers as materials for solid-state lasers[J]. Adv. Mater.,2000,12:1655.

[18] SAMUEL I D W,TURNBULL G A. Organic semiconductor lasers[J]. Chem. Rev.,2007,107:127.

[19] BALACHANDRAN R M,LAWANDY N M,MOON J A. Theory of laser action in scattering gain media[J]. Opt. Lett.,1997,22:319.

[20] HIRSCH M D,MARCUS M A,LEWIS A,et al.. A method for measuring picosecond phenomena in photolabile species:the emission lifetime of bacteriorhodopsin[J]. Biophysical Journal,1976,16:1399.

[21] QIAO Z W,WANG H Y,WANG L. Ultrafast spectroscopy study on T4 organic dye-sensitized films[J]. Chin. J. Lumin.,2014,35:791.

[22] LI Z S,YUE Y Y,ZHANG Y X,et al.. The electron transfer mechanism of butylamine-capped CdSe quantum dot sensitized nanocrystalline TiO2 films[J]. Chinese Optics,2015,8:428.

[23] WANG H,WANG H Y,GAO B R,et al. Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films[J]. Nanoscale,2011,3:2280.

[24] GAO B R,WANG H Y,HAO Y W,et al.. Time-resolved fluorescence study of aggregation-induced emission enhancement by restriction of intramolecular charge transfer state[J]. J. Phys. Chem. B,2010,114:128.

[25] GOOSSENS M,RUSECKAS A,TURNBULL G A,et al.. Subpicosecond pulses from a gain-switched polymer distributed feedback[J]. Appl. Phys. Lett.,2004,85:31.

杜江林, 高炳荣, 王海宇, 陈岐岱. 基于TiO2纳米粒子薄膜的低阈值随机激光器的动力学研究[J]. 中国光学, 2016, 9(2): 249. DU Jiang-lin, GAO Bing-rong, WANG Hai-yu, CHEN Qi-dai. Dynamics of low-threshold random laser based on TiO2 nanoparticle films[J]. Chinese Optics, 2016, 9(2): 249.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!