光学 精密工程, 2018, 26 (10): 2407, 网络出版: 2018-12-26   

Yb∶LuScO3晶体的超精密光学加工及其激光性能

Ultra-precision optical manufacture and laser performance of Yb∶LuScO3 crystal
作者单位
1 中国科学院 上海光学精密机械研究所 强激光材料重点实验室,上海 201800
2 中国科学院大学,北京 100049
3 上海恒益光学精密机械有限公司,上海 201800
4 山东大学 晶体材料国家重点实验室,山东 济南 250100
摘要
Yb∶LuScO3晶体作为固体激光器的新型增益介质,其面形和表面质量严重影响激光器的光束质量,因此探索Yb∶LuScO3晶体的超精度光学加工工艺参数具有重要意义。本文系统开展了Yb∶LuScO3晶体超精密光学加工的工艺参数研究,针对Yb∶LuScO3晶体在加工过程中容易破裂和表面质量较差的问题,提出了拼接上盘和树脂铜盘抛光垫的关键技术。首先,使用COMSOL Multiphysics有限元软件对拼接工艺中选取的不同保护垫料的应力进行仿真。接着,研磨阶段逐步减小B4C磨料的粒径。然后,粗糙阶段使用树脂铜盘作为抛光垫,并对树脂铜盘抛光垫的作用进行了分析。最后,使用激光二极管泵浦加工好的样品进行激光输出实验。实验结果表明: 基于该技术加工后的晶体表面粗糙度RMS=0.296 nm,面形精度 PV=53 nm。在1 086 nm处获得了8.3 W的连续激光输出,斜效率为58%。该加工方法可以广泛应用于Yb∶LuScO3晶体的高精度加工。
Abstract
Yb: LuScO3 crystal is a new type of gain medium used in solid-state lasers. The surface profile and surface quality of the Yb: LuScO3 crystal affect the characteristics of the output laser beam significantly. Therefore, it is extremely important to explore the processing parameters for its ultraprecision optical manufacture. In this paper, a systematic study of the processing parameters for the optical manufacture of Yb: LuScO3 crystal was reported. To solve issues related to the brittleness of the Yb: LuScO3 crystal and the poor quality of the generated surface, the key technology of stitching and the use of copper resin pads were proposed. First, the stress due to different protective paddings was simulated using COMSOL Multiphysics software and the size of abrasive B4C particles was continually decreased during the stitching and lapping stages, respectively. Next, copper resin pads were used during the stage of rough polishing, and their function was explained. Finally, the output power of the continuous wave laser was achieved by diode-pumping the finely polished Yb: LuScO3 crystal. The results reveal a final surface roughness of 0.296 nm (root mean square value) and surface accuracy of 53 nm (peak-to-valley value). An output power of 8.3 W and a slope efficiency of 58% were obtained using a diode laser pump source at a wavelength of 1 086 nm. This method can be widely used for the high-precision machining of Yb: LuScO3 crystals.
参考文献

[1] RUTHERFORD T S, TULLOCH W M, SINHA S, et al.. Yb∶YAG and Nd∶YAG edge-pumped slab lasers [J]. Optics Letters, 2001, 26(13): 986-988.

[2] 李隆,董武威,史鹏,等. 激光二极管阵列侧泵浦Nd∶YAG板条的热效应[J].光学 精密工程,2008, 16(11): 2121-2126.

    LI L, DONG W W, SHI P, et al.. Thermal effect of diode bar side-pumped Nd∶YAG slab [J]. Opt. Precision Eng., 2008, 16(11): 2121-2126. (in Chinese)

[3] INNERHOFER E, SDMEYER T, BRUNNER F, et al.. 60-W average power in 810-fs pulses from a thin-disk Yb∶YAG laser[J]. Optics Letters, 2003, 28(5): 367-369.

[4] RUSSBUELDT P,MANS T,ROTARIUS G, et al.. 400 W Yb∶YAG innoslab fs-amplifier[J]. Optics Express, 2009, 17(15): 12230-12245.

[5] ZHANG J, MAK K F, GRBMEYER S, et al.. 270 fs, 30-W-level Kerr-lens mode-locked Ho∶YAG thin-disk oscillator at 2 μm[J]. Nonlinear Optics, 2017: NTu3A.2.

[6] PETERMANN K, HUBER G, FORNASIERO L, et al.. Rare-earth-doped sesquioxides[J]. Journal of Luminescence, 2000, 87: 973-975.

[7] PETERMANN K, FORNASIERO L, MIX E, et al.. High melting sesquioxides: crystal growth, spectroscopy, and laser experiments[J]. Optical Materials, 2002, 19(1): 67-71.

[8] HEUER A M, SARACENO C J, BEIL K, et al.. Efficient OPSL-pumped mode-locked Yb∶Lu2O3 laser with 67% optical-to-optical efficiency[J]. Scientific Reports, 2016, 6: 19090.

[9] PETERMANN V, FAGUNDES-PETERS D,JOHANNSEN J,et al.. Highly Yb-doped oxides for thin-disc lasers[J]. Journal of Crystal Growth, 2005, 275(1): 135-140.

[10] KRANKEL C. Rare-earth-doped sesquioxides for diode-pumped high power lasers in the 1, 2, and 3μm spectral range[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 250-262.

[11] MUN J H, JOUINI A, NOVOSELOV A, et al.. Thermal and optical properties of Yb3+-doped Y2O3 single crystal grown by the micro-pulling-down method[J]. Japanese Journal of Applied Physics, 2006, 45(7): 5885-5888.

[12] FORNASIERO L, MIX E, PETERS V, et al.. New oxide crystals for solid state lasers[J]. Crystal Research and Technology,1999,34(2): 255-260.

[13] BAER C R, KRNKEL C, HECKL O H, et al.. 227-fs pulses from a mode-locked Yb∶LuScO3 thin disk laser[J]. Optics Express, 2009, 17(13): 10725-10730.

[14] SCHMIDT A,PETROV V,GRIEBNER U,et al.. Diode-pumped mode-locked Yb∶LuScO3 single crystal laser with 74 fs pulse duration[J]. Optics Letters, 2010, 35(4): 511-513.

[15] ONG N S, VENKATESH V C. Semi-ductile grinding and polishing of Pyrex glass[J]. Journal of Materials Processing Technology, 1998, 83(1): 261-266.

[16] 郝良振. 掺钕氧化镥激光晶体生长及其性能研究[D]. 山东: 山东大学, 2012.

    HAO L ZH. Growth and Properties of Nd: Lu2O3 Laser Crystal[D]. Shandong: Shandong University, 2012.(in Chinese)

[17] 王柳. 蓝宝石抛光树脂铜盘的制备及其性能研究[D]. 大连: 大连理工大学, 2015.

    WANG L. The Prepare and the Performance Research of Copper Resin for Lapping Sapphire[D]. Dalian: Dalian University of Technology, 2015.(in Chinese)

沈冯峰, 徐学科, 高文兰, 于浩海, 张龙, 邵建达. Yb∶LuScO3晶体的超精密光学加工及其激光性能[J]. 光学 精密工程, 2018, 26(10): 2407. SHEN Feng-feng, XU Xue-ke, GAO Wen-lan, YU Hao-hai, ZHANG Long, SHAO Jian-da. Ultra-precision optical manufacture and laser performance of Yb∶LuScO3 crystal[J]. Optics and Precision Engineering, 2018, 26(10): 2407.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!