激光技术, 2019, 43 (4): 517, 网络出版: 2019-07-10  

内燃机激光多点点火技术研究进展

Review of multi-point laser ignition for internal combustion engines
作者单位
1 南京理工大学 化工学院, 南京 210094
2 上海航天动力技术研究所, 上海 201109
摘要
稀薄燃烧能够提高内燃机的热效率并降低污染物的排放,但稀薄燃烧的火焰传播速度慢且在高压下易出现局部淬火现象。激光诱导火花点火能够有效解决燃料在低当量比和高压下燃烧遇到的问题, 此外激光点火能够实现多点点火从而缩短燃烧时间并增大燃烧室压力,相较于传统的电火花塞点火技术具有很大优势。锥形腔、衍射透镜、空间光调制器和达曼光栅均已被用于实现多点激光诱导火花点火。归纳了多点激光诱导火花点火的几种技术途径, 讨论了内燃机多点激光诱导火花点火的研究状况和最新成果。对实现多点激光诱导火花点火的几种方法进行了评价, 并指出了每种方法在多点激光诱导火花点火中的优势和需要解决的问题。在此基础上, 对内燃机激光多点点火技术的研究前景进行了展望。
Abstract
Lean combustion can improve the thermal efficiency of an engine and reduce the emission of pollutants. But lean combustion is challenged by the low flame propagation and the possible local quenching of the initial flame kernel near the lean limit at high pressures. Laser-induced spark ignition can effectively solve these problems residing in the combustion process of the fuel at low equivalence ratio and high pressures. In addition, the laser-induced spark ignition can achieve multi-point ignition easily and can reduce the combustion time and increase the combustion pressure significantly. Therefore, laser induced spark ignition has many advantages over the traditional electric spark plug ignition technique. Conical cavity, diffractive lens, spatial light modulator and Dammam grating have been used to achieve the multi-point laser-induced spark ignition. Several technical approaches of multi-point laser induced spark ignition are summarized. The research status and the latest achievements of multi-point laser induced spark ignition for internal combustion engines are discussed. Several methods to achieve multi-point ignition of laser-induced spark are evaluated. Furthermore, the advantages and problems to be solved for each method in the multi-point ignition of laser induced spark are pointed out. On the basis of the above examinations, some suggestions on the future work are also proposed.
参考文献

[1] TAYLOR A M K P. Science review of internal combustion engines [J]. Energy Policy, 2008, 36(12): 4657-4667.

[2] QIN X, KOBAYASHI H, NIIOKA T. Laminar burning velocity of hydrogen-air premixed flames at elevated pressure [J]. Experimental Thermal & Fluid Science, 2000, 21(1): 58-63.

[3] LAMOUREUX N, DJEBALI-CHAUMEIX N, PAILLARD C E. Laminar flame velocity determination for H2-air-He-CO2 mixtures using the spherical bomb method [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 385-393.

[4] JI C, WANG S. Experimental study on combustion and emissions performance of a hybrid hydrogen-gasoline engine at lean burn limits[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1453-1462.

[5] KARIM G A, WIERZBA I, AL-ALOUSI Y. Methane-hydrogen mixtures as fuels [J]. International Journal of Hydrogen Energy, 1996, 21(7): 625-631.

[6] PULKRABEK W W. Engineering fundamentals of the internal combustion engine[M]. New Jersey,USA: Pearson Prentice Hall, 2004: 106.

[7] SHRESTHA S B, KARIM G. Hydrogen as an additive to methane for spark ignition engine applications [J]. International Journal of Hydrogen Energy, 1999, 24(6): 577-586.

[8] SCHEFER R. Hydrogen enrichment for improved lean flame stability [J]. International Journal of Hydrogen Energy, 2003, 28(10): 1131-1141.

[9] CHEHROUDI B. Laser ignition for combustion engines [C]//Advanced Laser Applications Conference and Exposition. Michigan,USA: The International Lasers Users Council, 2004: 1-20.

[10] PHUOC T X. Laser-induced spark ignition fundamental and applications [J]. Optics & Lasers in Engineering, 2006, 44(5): 351-397.

[11] WINTNER E, KOFLER H, SRIVASTAVA D K, et al. Laser plasma ignition: Status, perspectives, solutions[J].Proceedings of the SPIE, 2013, 9065: 90650B.

[12] KOFLER H, TAUER J, TARTAR G, et al. An innovative solid-state laser for engine ignition [J]. Laser Physics Letters, 2007, 4(4): 322-327.

[13] KROUPA G. Novel miniaturized high-energy Nd∶YAG laser for spark ignition in internal combustion engines [J]. Optical Engineering, 2009, 48(1): 014202-014205.

[14] MA Y F, LI X D, YU X, et al. A novel miniaturized passively Q-switched pulse-burst laser for engine ignition [J]. Optics Express, 2014, 22(20): 24655-24665.

[15] DEARDEN G, SHENTON T. Laser ignited engines: Progress, cha-llenges and prospects[J]. Optics Express, 2013, 21(s6): A1113-A1125.

[16] TAUER J, KOFLER H, WINTNER E. Laser-initiated ignition [J]. Laser & Photonics Reviews, 2010, 4(1): 99-122.

[17] FUCHS D I J, LEITNER D I A, TINSCHMANN G, et al. Concept for high-performance direct ignition gas engines [J]. MTZ Worldwide, 2013, 74(5): 18-23.

[18] LYON E, KUANG Z, CHENG H, et al. Multi-point laser spark generation for internal combustion engines using a spatial light modulator [J]. Journal of Physics, 2014, D47(47): 475501.

[19] CHEN M, DOU Zh G, XI W X. Advances in the methods of laser induced plasma ignition [J]. Laser & Optoelectronics Progress, 2018, 55(3): 030010 (in Chinese).

[20] NAKAYA S, ISEKI S, GU X J, et al. Flame kernel formation behaviors in close dual-point laser breakdown spark ignition for lean methane/air mixtures [J]. Proceedings of the Combustion Institute, 2017, 36(3): 3441-3449.

[21] PHUOC T X. Laser spark ignition: Experimental determination of laser-induced breakdown thresholds of combustion gases [J]. Optics Communications, 2000, 175(4/6): 419-423.

[22] YABLONOVITCH E. Self-phase modulation and short-pulse generation from laser-breakdown spark [J]. Physical Review, 1974, A10(5): 1888-1895.

[23] TAIRA T. High brightness microchip laser and engine ignition [J]. The Review of Laser Engineering, 2010, 38(8): 576-584.

[24] PHUOC T X. Single-point versus multi-point laser ignition: experimental measurements of combustion times and pressures [J]. Combustion & Flame, 2000, 122(4): 508-510.

[25] MORSY M H, KO Y S, CHUNG S H. Laser-induced ignition using a conical cavity in CH4-air mixtures [J]. Combustion & Flame, 1999, 119(4): 473-482.

[26] MORSY M H, KO Y S, CHUNG S H, et al. Laser-induced two-point ignition of premixture with a single-shot laser [J]. Combustion & Flame, 2001, 124(4): 724-727.

[27] MORSY M H, CHUNG S H. Laser-induced multi-point ignition with a single-shot laser using two conical cavities for hydrogen/air mixture [J]. Experimental Thermal & Fluid Science, 2003, 27(4): 491-497.

[28] RYU S K, WON S H, CHUNG S H. Laser-induced multi-point ignition with single-shot laser using conical cavities and prechamber with jet holes [J]. Proceedings of the Combustion Institute, 2009, 32(2): 3189-3196.

[29] WEINROTTER M, KOPECEK H, TESCH M, et al. Laser ignition of ultra-lean methane/hydrogen/air mixtures at high temperature and pressure [J]. Experimental Thermal & Fluid Science, 2005, 29(5): 569-577.

[30] KUANG Z, LYON E, CHENG H, et al. Multi-location laser ignition using a spatial light modulator towards improving automotive gasoline engine performance[J]. Optics and Lasers in Engineering, 2017, 90(1): 275-283.

[31] NICOLAIE P, TSUNEKANE M, TAIRA T. All-poly-crystalline ceramics Nd∶YAG/Cr4+∶YAG monolithic micro-lasers with multiple-beam output [M]. Vilnius,Lithuania: InTech, 2011: 59-82.

[32] TSUNEKANE M. Micro-solid-state laser for ignition of automobile engines[M].Vilnius,Lithuania: InTech, 2010: 195-212.

[33] TAIRA T. High brightness microchip lasers for engine ignition[C]//Frontiers in Optics. Washington DC,USA: Optical Society of America, 2012: FM3G. 1.

[34] TSUNEKANE M, TAIRA T. Long time operation of composite ceramic Nd∶YAG/Cr∶YAG micro-chip lasers for ignition[C]// Laser Ignition Conference. Washington DC,USA: Optical Society of America, 2015: T4A-3.

[35] DENG S P, CHEN P F, WANG Y, et al. Dual-end LD-pumped slab lasers with folded three-pass resonators [J]. Laser Technology, 2018, 42(1): 43-47 (in Chinese).

[36] LI B Zh, ZOU Y G. Tunable vertical cavity surface emitting lasers [J]. Laser Technology, 2018, 42(4): 556-561 (in Chinese).

[37] LIU J Q, WANG N, YANG Y Y, et al. A micro acousto-optic Q-switched laser with narrow pulse width [J]. Laser Technology, 2017, 41(4): 562-565 (in Chinese).

[38] LI Y L, JIA K, GU X S, et al. Study on an acousto-optical Q-switched Nd∶YVO4 laser with 25kHz repetition rate and about 2ns pulse duration [J]. Laser Technology, 2018, 42(1): 34-38 (in Chinese).

[39] YANG L, DONG J. Progress in laser ignition based on passively Q-switched solid-sate lasers [J]. Laser & Optoelectronics Progress, 2015, 52(3): 030007 (in Chinese).

[40] MA Y F, HE Y, YU X, et al. Research progress of laser source used in laser induced plasma ignition [J]. Infrared and Laser Engineering, 2016, 45(11): 61-66 (in Chinese).

[41] DONG J, WANG G Y, REN Y Y. Advances in passively Q-switched solid-state lasers based on composite materials [J]. Chin-ese Journal of Lasers, 2013, 40(6): 0601003 (in Chinese).

[42] NICOLAIE P, TSUNEKANE M, KANEHARA K, et al. Composite all-ceramics, passively Q-switched Nd∶YAG/Cr4+∶YAG monolithic micro-laser with two-beam output for multi-point ignition[C]//Proceedings of the Lasers and Electro-Optics. New York,USA: IEEE, 2011: 1-2.

[43] NICOLAIE P, TSUNEKANE M, TAIRA T. Composite, all-cera-mics, high-peak power Nd∶YAG/Cr4+∶YAG monolithic micro-laser with multiple-beam output for engine ignition [J]. Optics Express, 2011, 19(10): 9378-9384.

[44] WANG Z, YU J, XIA K, et al. 2×2 arrayed and passively Q-switched Nd∶YVO4 laser under Dammann-arrayed pumping [J]. Applied Optics, 2014, 53(12): 2664-2668.

[45] MA Y, HE Y, YU X, et al. Multiple-beam, pulse-burst, passively Q-switched ceramic Nd∶YAG laser under micro-lens array pumping [J]. Optics Express, 2015, 23(19): 24955-24961.

高旭恒, 郭宁, 吴立志, 张伟, 沈瑞琪. 内燃机激光多点点火技术研究进展[J]. 激光技术, 2019, 43(4): 517. GAO Xuheng, GUO Ning, WU Lizhi, ZHANG Wei, SHEN Ruiqi. Review of multi-point laser ignition for internal combustion engines[J]. Laser Technology, 2019, 43(4): 517.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!