光电子技术, 2018, 38 (4): 231, 网络出版: 2019-01-15  

二维钙钛矿光电材料的光学性质

The Optical Properties of 2D Perovskites
作者单位
南京理工大学 电子工程与光电技术学院, 南京 210094
摘要
相同的晶体结构导致二维和三维钙钛矿具有不同的光学性质。相对于三维钙钛矿材料, 在同等条件下, 二维钙钛矿稳定性显著提高。实验发现, 可通过将剥离晶体的二维钙钛矿无机层中八面体[MX6]4-层数(n)从5减小到1, 使能隙从1.85 eV单调增加到2.42 eV, 且二维有机无机杂化钙钛矿的瞬态光调制光谱可用来测量Rashba分裂。最后讨论了二维钙钛矿将来可能的研究方向。
Abstract
Different crystalline structures lead to different optical properties. 2D perovskites are more stable than 3D perovskites in the same experimental environment. It was experimentally discovered that, in the exfoliated crystals, decreasing n from 5 to 1 enabled band gap absorption and emission to increase monotonously from 1.85 eV to 2.42 eV. In addition, in the photo-modulation spectrum of 2D organic-inorganic halide perovskites, Rashba splitting could be measured. Finally, the potential future development of 2D perovskites was discussed.
参考文献

[1] 肖 娟, 张浩力. 新型有机-无机杂化钙钛矿发光材料的研究进展[J]. 物理化学学报, 2016, 32(8):1894-1912.

[2] 陈皓然, 夏英东, 陈永华,等. 低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料[J]. 材料导报, 2018, 32(1):1-11.

[3] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17):6050-6051.

[4] National Renewable Energy Laboratory 2016 Solar Cell Efficiencies.[OL] (http://www.nrel.gov/ncpv/images/efficiency_chart.jpg)

[5] 崔 东. 颜色可调的钙钛矿薄膜的制备及其在高效钙钛矿太阳能电池上的应用[D]. 陕西师范大学, 2016.

[6] Wehrenfennig C, Eperon GE, Johnston MB, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites.[J]. Advanced Materials, 2014, 26(10):1584-1589.

[7] Docampo P, Guldin S, Leijtens T, et al. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices[J]. Advanced Materials, 2014, 26(24):4013-4030.

[8] 栾梦雨, 刘晓倩, 陈 方,等. 有机-无机钙钛矿晶体生长调控研究进展[J]. 河南大学学报(自然版), 2016, 46(3):276-285.

[9] Smith I C, Hoke E T, Solisibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability[J]. Angewandte Chemie, 2015, 126(42):11414-11417.

[10] Tsai H, Nie W, Blancon J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells[J]. Nature, 2016, 536(7616):312-316.

[11] Cao D H, Stoumpos C C, Farha O K, et al. 2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications[J]. Journal of the American Chemical Society, 2015, 137(24):7843-7850.

[12] Yaffe O, Chernikov A, Norman Z M, et al. Excitons in ultrathin organic-inorganic perovskite crystals[J]. Physical Review B, 2015, 92(4):045414.

[13] Grote C, Berger R F. Strain Tuning of Tin-Halide and Lead-Halide Perovskites: A First-Principles Atomic and Electronic Structure Study[J]. Journal of Physical Chemistry C, 2015, 119(40):150918142400006.

[14] Li G, Zhang T, Guo N, et al. Ion‐Exchange‐Induced 2D-3D Conversion of HMA1-xFAxPbI3Cl Perovskite into a High‐Quality MA1 xFAxPbI3 Perovskite[J]. Angewandte Chemie, 2016, 128(43):13658-13662.

[15] Chen Y, Sun Y, Peng J, et al. 2D Ruddlesden-Popper Perovskites for Optoelectronics.[J]. Advanced Materials, 2018, 30(2):1703487.

[16] Papavassiliou G C. Synthetic Three-and Lower-Dimensional Semiconductors Based on Inorganic Units[J]. Molecular Crystals, 1996, 286(1):231-238..

[17] Ishihara T, Takahashi J, Goto T. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4[J]. Phys Rev B Condens Matter, 1990, 42(17):11099-11107.

[18] Yaffe O, Chernikov A, Norman Z M, et al. Excitons in ultrathin organic-inorganic perovskite crystals[J]. Physical Review B, 2016, 92(4):045414.

[19] Tanaka K, Takahashi T, Kondo T, et al. Image charge effect on two-dimensional excitons in an inorganic-organic quantum-well crystal[J]. Phys.rev.b, 2005, 71(4).

[20] Hong X, Ishihara T, Nurmikko A V. Photoconductivity and electroluminescence in lead iodide based natural quantum well structures[J]. Solid State Communications, 1992, 84(6):657-661.

[21] Hong X, Ishihara T, Nurmikko A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors[J]. Phys.rev.b, 1992, 45(12):6961.

[22] Goldschmidt V M. Crystal Structure and Chemical Constitution[J]. Science Progress in the Twentieth Century (1919-1933), 1929, 24(93):102-103.

[23] Kieslich G, Sun S, Cheetham A K. An extended Tolerance Factor approach for organic-inorganic perovskites.[J]. Chemical Science, 2015, 6(6):3430-3433.

[24] Chao L, Wang Z, Xia Y, et al. Recent progress on low dimensional perovskite solar cells[J]. Journal of Energy Chemistry, 2017.

[25] Kamminga M E, Fang H H, Filip M R, et al. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids[J]. Chemistry of Materials, 2016, 28(13).

[26] Smith I C, Hoke E T, Solisibarra D, et al. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability.[J]. Angewandte Chemie, 2015, 126(42):11414-11417.

[27] Baikie T. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications[J]. Journal of Materials Chemistry A, 2013, 1(18):5628-5641.

[28] Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters, 2013, 13(4):1764-1769.

[29] Palosz B. The structure of PbI2 polytypes 2H and 4H: a study of the 2H-4H transition[J]. Journal of Physics Condensed Matter, 1999, 2(24):5285.

[30] Mitzi D B, Feild C A, Harrison W T A, et al. Conducting tin halides with a layered organic-based perovskite structure[J]. Nature, 1994, 369(6480):467-469.

[31] Du K, Tu Q, Zhang X, et al. Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity[J]. Inorganic Chemistry, 2017, 56(15):9291.

[32] Straus D B, Kagan C R. Electrons, Excitons, and Phonons in Two-Dimensional Hybrid Perovskites: Connecting Structural, Optical, and Electronic Properties[J]. Journal of Physical Chemistry Letters, 2018.

[33] Kim H S, Lee C R, Im J H, et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%[J]. Scientific Reports, 2012, 2(8):591.

[34] Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells.[J]. Nature, 2013, 499(7458):316-319.

[35] Edri E, Kirmayer S, Cahen D, et al. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.[J]. Journal of Physical Chemistry Letters, 2013, 4(6):897-902.

[36] Abbas H A, Kottokkaran R, Ganapathy B, et al. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer[J]. Apl Materials, 2015, 3(1):506-7365.

[37] Jin H H, Sang H I, Noh J H, et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J]. Nature Photonics, 2013, 7(7):486-491.

[38] Lee Y H, Zhang X Q, Zhang W, et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition.[J]. Advanced Materials, 2012, 24(17):2320-2325.

[39] Yani Chen, Yong Sun, Jiajun Peng, et al., 2D Ruddlesden-Popper perovskites for optoelectronics.[J]. Advanced Materials, 2018, 30(2): 1703487.

[40] Yang Y, Ostrowski D P, France R M, et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites[J]. Nature Photonics, 2015, 10.

[41] Ishihara T. Optical properties of PbI-based perovskite structures[J]. Journal of Luminescence, 1994, 60(60):269-274.

[42] Muljarov E A, Tikhodeev S G, Gippius N A, et al. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds[J]. Physical Review B Condensed Matter, 1995, 51(20):14370.

[43] Hong X, Ishihara T, Nurmikko A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors[J]. Phys.rev.b, 1992, 45(12):6961.

[44] Vos A D. Detailed balance limit of the efficiency of tandem solar cells[J]. Journal of Physics D Applied Physics, 2000, 13(5):839.

[45] William Shockley, Hans J. Queisser. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells[J]. Journal of Applied Physics, 1961, 32(3):510-519.

[46] Vos A D. Detailed balance limit of the efficiency of tandem solar cells[J]. Journal of Physics D Applied Physics, 2000, 13(5):839-846.

[47] Brown A S, Green M A. Detailed balance limit for the series constrained two terminal tandem solar cell[J]. Physica E: Low-dimensional Systems and Nanostructures, 2002, 14(1):96-100.

[48] Blancon J C, Tsai H, Nie W, et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites[J]. Science, 2017, 355(6331):1288.

[49] Zhai Y, Baniya S, Zhang C, et al. Giant Rashba splitting in 2D organic-inorganic halide perovskites measured by transient spectroscopies.[J]. Science Advances, 2017, 3(7):e1700704.

[50] Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, et al. Gate control of spin-orbit interaction in an inverted In_<0.53>Ga_<0.47>As/In_<0.52>Al_<0.48> As heterostructure[J]. Physica E-Low-Dimensional Systems & Nanostructures, 1997, 2(1-4):527-531.

张云雁. 二维钙钛矿光电材料的光学性质[J]. 光电子技术, 2018, 38(4): 231. ZHANG Yunyan. The Optical Properties of 2D Perovskites[J]. Optoelectronic Technology, 2018, 38(4): 231.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!