红外与毫米波学报, 2016, 35 (1): 25, 网络出版: 2016-03-22   

新型亚波长陷光结构HgCdTe红外探测器研究进展

Recent progress of subwavelength photon trapping HgCdTe infrared detector
作者单位
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2 华东师范大学 极化材料与器件教育部重点实验室,上海 200241
引用该论文

胡伟达, 梁健, 越方禹, 陈效双, 陆卫. 新型亚波长陷光结构HgCdTe红外探测器研究进展[J]. 红外与毫米波学报, 2016, 35(1): 25.

HU Wei-Da, LIANG Jian, YUE Fang-Yu, CHEN Xiao-Shuang, LU Wei. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 25.

参考文献

[1] Tang D Y, Mi Z Y. Introduction to optical-electro devices,[M] Shanghai Science and Technology Press, Shanghai, (汤定元,糜正瑜等.光电器件概论[M]. 上海:上海科学技术文献出版社),1989,298.

[2] Chu J H, and Sher A, Physics of narrow band semiconductor[J], Science Publisher, Beijing, 2005.

[3] Rogalski A, Antoszewski J, Faraone L, Third-generation infrared photodetector arrays[J], J. Appl. Phys., 2009, 105: 091101.

[4] Chu J H, Li B, Liu K, et al. Empirical rule of intrinsic absorption spectroscopy in Hg1-xCdxTe, [J] J. Appl. Phys, 1994, 75:1234.

[5] HU Wei-Da, YE Zhen-Hua, LIAO Lei, et al. A 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultra-low spectral crosstalk[J], Opt. Lett., 2014, 39: 5130.

[6] Schaake H F, Kinch M A, Chandra D, et al. High-Operating-Temperature MWIR Detector Diodes[J], J. Electron. Mater., 2008, 37: 1401.

[7] Hu W D, Chen X S, Ye Z H, et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density Hydrogen plasma modification[J]. Appl. Phys. Lett., 2011, 99: 091101.

[8] Wang J, Chen X S, Hu W D, et al. Temperature dependence characteristics of dark current for arsenic doped LWIR HgCdTe detectors[J]. Infra. Phys. Tech., 2013, 61: 157-161.

[9] Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for Long-wavelength HgCdTe-based Photovoltaic Infrared Detector Pixel Arrays[J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19: 4100107.

[10] Hu W D, Chen X S, Ye Z H, et al. Polarity Inversion and Coupling of Laser Beam Induced Current in As-doped Long-wavelength HgCdTe Infrared Detector Pixel Arrays: Experiment and Simulation[J]. Appl. Phys. Lett., 2012, 101: 181108.

[11] Aqariden F, Elsworth J, Zhao J, et al. MBE HgCdTe for HDVIP Devices: Horizontal Integration in the US HgCdTe FPA Industry[J], J. Electron. Mater., 2012, 41: 2700.

[12] Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetector[J]. ACS Nano, 2014, 8: 787-796.

[13] Baba T, Photonic Crystals, Chap. 11, ed. K. Inoue and K.Ohtaka[M], Berlin: Springer, 2004.

[14] Luo L B, Zeng L H, Xie C, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector[J]. Sci. Rep., 2014, 10:1038.

[15] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with Active Optical Antennas[J]. Science., 2011, 332:702.

[16] Wu Y M, Zhang X J, Pan H H, et al. In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors[J]. Sci. Rep., 2013, 3: 3248.

[17] Luo L B, Chen J J, Wang M Z, et al. Near-infrared light photovoltaic detector based on GaAs nanocones array/monolayer graphene Schottky junction[J]. Adv. Funct. Mater., 2014, 24: 2794.

[18] Kalchmair S, Detz H, Cole G D, et al. Photonic crystal slab quantum well infrared photodetector[J]. Appl. Phys. Lett.., 2011,98: 011105.

[19] Miao J S, Hu W D, Jing Y L, et al. Surface Plasmon-Enhanced Photodetection in Few-Layer MoS2 Phototransistors with Au Nanostructure Arrays[J]. Small, 2015, 11: 2392.

[20] Lee S J, Ku Z, Barve A, et al. A monolithically integrated plasmonic infrared quantum dot camera[J]. Nat. Commun., 2011, 2: 286.

[21] Krishna S, Posani K T, Tripathi V, et al. Quantum Dot Infrared Sensors with Photonic Crystal Cavity[J]. Proc. LEOS, 2005, 1: 909-910.

[22] Yue F Y, Wu J, and Chu J H, Deep/shallow levels in arsenic-doped HgCdTe determined by modulated photoluminescence spectr[J]a, Appl. Phys. Lett., 2008, 93: 131909.

[23] Kocer H, Arslan Y, and Besikci C, Numerical analysis of long wavelength infrared HgCdTe photodiodes[J]. Infra. Phys. Tech, 2012, 55:49.

[24] Gravrand O, and Gidon S, Electromagnetic modeling of n-on-p HgCdTe back-illuminated infrared photodiode response[J]. J. Electron. Mater., 2008, 37:1251.

[25] Bellotti E, and Orsogna D D, Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors[J]. IEEE J. Sel. Top. Quant. Electron., 2006, 42:418.

[26] Kocer H, Numerical device simulation to investigate the noise currents of mercury cadmium telluride photosensors for thermal imaging applications[J]. Int. J. Numer. Model., 2013, 26: 573.

[27] Wehner J G A, Smith E P G, Venzor G M, et al. HgCdTe Photon Trapping Structure for Broadband Mid-Wavelength Infrared Absorption[J]. J. Electron. Mater, 2011, 40:1840.

[28] Liang J, Hu W D, Ye Z H, et al. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure[J]. J. Appl. Phys., 2014, 115: 184504.

[29] Schuster J, and Bellotti E, Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays[J]. Opt. Express, 2013, 21, 12, 14712.

[30] Keasler C A, and Bellotti E, Three-Dimensional Electromagnetic and Electrical Simulation of HgCdTe Pixel Arrays[J]. J. Electron. Mater., 2011, 40: 1795.

[31] Schuster J, Pinkie B, Tobin S, et al. Numerical Simulation of Third-Generation HgCdTe Detector Pixel Arrays[J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19: 3800415.

[32] Chu J H, Mi Z Y, and Tang D Y, Band-to-band optical absorption in narrow-gap Hg1-xCdxTe semiconductors[J].J. Appl. Phys., 1992, 71:3955.

[33] Hu W D, Chen X S, Ye Z H, et al. Accurate simulation of temperature dependence of dark current in HgCdTe infrared detector assisted by analytical modeling[J]. J. Electron. Mater, 2010, 39: 981.

[34] Lei W., Antoszewski J., Faraone L., Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Appl. Phys. Rev. 2015, 2: 041303.

[35] Gilmore A S, Bangs J, and Gerrish A, VLWIR HgCdTe detector current-voltage analysis[J], J. Electron. Mater., 2006, 35: 1403.

[36] Wehner J G A, Musca C A, Sewell R H, et al. Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors[J], Appl. Phys. Lett., 2005, 87: 211104.

[37] Wang K X, Yu Z F, Liu V, et al. Light trapping in photonic crystals[J]. Proc. SPIE., 2014, 9177, 91770N.

[38] Qiu W C, and Hu W D, Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors, Sci.China-Phys. Mech.[J]Astron., 2015, 58, 027001.

[39] Keasler C A, and Bellotti E, A numerical study of broadband absorbers for visible to infrared detectors, Appl. Phys. Lett. 2011, 99: 091109.

[40] Pinkie B, and Bellotti E, Numerical Simulation of the Modulation Transfer Function in HgCdTe Detector Arrays, J. Electron. Mater., [J] 2014, 43: 2864.

[41] Hu W D, Chen X S, Yin F, et al, Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors[J]. J. Appl. Phys., 2009, 105: 104502.

[42] Qiu W C, Hu W D, Chen L, et al, Dark Current Transport and Avalanche Mechanism in HgCdTe Electron-Avalanche Photodiodes[J]. IEEE T. Electron Dev, 2015, 62: 1926.0052

胡伟达, 梁健, 越方禹, 陈效双, 陆卫. 新型亚波长陷光结构HgCdTe红外探测器研究进展[J]. 红外与毫米波学报, 2016, 35(1): 25. HU Wei-Da, LIANG Jian, YUE Fang-Yu, CHEN Xiao-Shuang, LU Wei. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 25.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!