红外与毫米波学报, 2016, 35 (1): 25, 网络出版: 2016-03-22   

新型亚波长陷光结构HgCdTe红外探测器研究进展

Recent progress of subwavelength photon trapping HgCdTe infrared detector
作者单位
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2 华东师范大学 极化材料与器件教育部重点实验室,上海 200241
摘要
综述了近几年来亚波长陷光结构HgCdTe红外探测器研究进展.系统介绍了一种结合有限元方法与时域有限差分方法对红外探测器的“光”“电”特性进行联合模拟和设计方法,以及基于这种新的数值模拟方法对亚波长人工微结构HgCdTe红外探测器的模拟和分析结果.理论分析和实验研制数据均显示这种新型亚波长人工微结构结构具有很好的陷光特性,在提高长波红外探测器性能方面具有潜在应用前景.
Abstract
Recent progress of HgCdTe infrared detector with subwavelength photon trapping structure has been reviewed in this paper. A combination approach of finite element method and finite difference time domain method, which can be used for jointly simulating of "light" and "electricity" characteristics in infrared detector, was systematically introduced. Numerical simulation and analysis results based on the HgCdTe infrared detectors with subwavelength microstructure were also demonstrated. The theoretical analysis and experimental data have shown that the subwavelength microstructure can trap photons in active region of infrared detectors. The subwavelength photon trapping structure has a promising prospect on improving the performance of long wavelength infrared detector.
参考文献

[1] Tang D Y, Mi Z Y. Introduction to optical-electro devices,[M] Shanghai Science and Technology Press, Shanghai, (汤定元,糜正瑜等.光电器件概论[M]. 上海:上海科学技术文献出版社),1989,298.

[2] Chu J H, and Sher A, Physics of narrow band semiconductor[J], Science Publisher, Beijing, 2005.

[3] Rogalski A, Antoszewski J, Faraone L, Third-generation infrared photodetector arrays[J], J. Appl. Phys., 2009, 105: 091101.

[4] Chu J H, Li B, Liu K, et al. Empirical rule of intrinsic absorption spectroscopy in Hg1-xCdxTe, [J] J. Appl. Phys, 1994, 75:1234.

[5] HU Wei-Da, YE Zhen-Hua, LIAO Lei, et al. A 128×128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultra-low spectral crosstalk[J], Opt. Lett., 2014, 39: 5130.

[6] Schaake H F, Kinch M A, Chandra D, et al. High-Operating-Temperature MWIR Detector Diodes[J], J. Electron. Mater., 2008, 37: 1401.

[7] Hu W D, Chen X S, Ye Z H, et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density Hydrogen plasma modification[J]. Appl. Phys. Lett., 2011, 99: 091101.

[8] Wang J, Chen X S, Hu W D, et al. Temperature dependence characteristics of dark current for arsenic doped LWIR HgCdTe detectors[J]. Infra. Phys. Tech., 2013, 61: 157-161.

[9] Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for Long-wavelength HgCdTe-based Photovoltaic Infrared Detector Pixel Arrays[J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19: 4100107.

[10] Hu W D, Chen X S, Ye Z H, et al. Polarity Inversion and Coupling of Laser Beam Induced Current in As-doped Long-wavelength HgCdTe Infrared Detector Pixel Arrays: Experiment and Simulation[J]. Appl. Phys. Lett., 2012, 101: 181108.

[11] Aqariden F, Elsworth J, Zhao J, et al. MBE HgCdTe for HDVIP Devices: Horizontal Integration in the US HgCdTe FPA Industry[J], J. Electron. Mater., 2012, 41: 2700.

[12] Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetector[J]. ACS Nano, 2014, 8: 787-796.

[13] Baba T, Photonic Crystals, Chap. 11, ed. K. Inoue and K.Ohtaka[M], Berlin: Springer, 2004.

[14] Luo L B, Zeng L H, Xie C, et al. Light trapping and surface plasmon enhanced high-performance NIR photodetector[J]. Sci. Rep., 2014, 10:1038.

[15] Knight M W, Sobhani H, Nordlander P, et al. Photodetection with Active Optical Antennas[J]. Science., 2011, 332:702.

[16] Wu Y M, Zhang X J, Pan H H, et al. In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors[J]. Sci. Rep., 2013, 3: 3248.

[17] Luo L B, Chen J J, Wang M Z, et al. Near-infrared light photovoltaic detector based on GaAs nanocones array/monolayer graphene Schottky junction[J]. Adv. Funct. Mater., 2014, 24: 2794.

[18] Kalchmair S, Detz H, Cole G D, et al. Photonic crystal slab quantum well infrared photodetector[J]. Appl. Phys. Lett.., 2011,98: 011105.

[19] Miao J S, Hu W D, Jing Y L, et al. Surface Plasmon-Enhanced Photodetection in Few-Layer MoS2 Phototransistors with Au Nanostructure Arrays[J]. Small, 2015, 11: 2392.

[20] Lee S J, Ku Z, Barve A, et al. A monolithically integrated plasmonic infrared quantum dot camera[J]. Nat. Commun., 2011, 2: 286.

[21] Krishna S, Posani K T, Tripathi V, et al. Quantum Dot Infrared Sensors with Photonic Crystal Cavity[J]. Proc. LEOS, 2005, 1: 909-910.

[22] Yue F Y, Wu J, and Chu J H, Deep/shallow levels in arsenic-doped HgCdTe determined by modulated photoluminescence spectr[J]a, Appl. Phys. Lett., 2008, 93: 131909.

[23] Kocer H, Arslan Y, and Besikci C, Numerical analysis of long wavelength infrared HgCdTe photodiodes[J]. Infra. Phys. Tech, 2012, 55:49.

[24] Gravrand O, and Gidon S, Electromagnetic modeling of n-on-p HgCdTe back-illuminated infrared photodiode response[J]. J. Electron. Mater., 2008, 37:1251.

[25] Bellotti E, and Orsogna D D, Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors[J]. IEEE J. Sel. Top. Quant. Electron., 2006, 42:418.

[26] Kocer H, Numerical device simulation to investigate the noise currents of mercury cadmium telluride photosensors for thermal imaging applications[J]. Int. J. Numer. Model., 2013, 26: 573.

[27] Wehner J G A, Smith E P G, Venzor G M, et al. HgCdTe Photon Trapping Structure for Broadband Mid-Wavelength Infrared Absorption[J]. J. Electron. Mater, 2011, 40:1840.

[28] Liang J, Hu W D, Ye Z H, et al. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure[J]. J. Appl. Phys., 2014, 115: 184504.

[29] Schuster J, and Bellotti E, Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays[J]. Opt. Express, 2013, 21, 12, 14712.

[30] Keasler C A, and Bellotti E, Three-Dimensional Electromagnetic and Electrical Simulation of HgCdTe Pixel Arrays[J]. J. Electron. Mater., 2011, 40: 1795.

[31] Schuster J, Pinkie B, Tobin S, et al. Numerical Simulation of Third-Generation HgCdTe Detector Pixel Arrays[J]. IEEE J. Sel. Top. Quant. Electron., 2013, 19: 3800415.

[32] Chu J H, Mi Z Y, and Tang D Y, Band-to-band optical absorption in narrow-gap Hg1-xCdxTe semiconductors[J].J. Appl. Phys., 1992, 71:3955.

[33] Hu W D, Chen X S, Ye Z H, et al. Accurate simulation of temperature dependence of dark current in HgCdTe infrared detector assisted by analytical modeling[J]. J. Electron. Mater, 2010, 39: 981.

[34] Lei W., Antoszewski J., Faraone L., Progress, challenges, and opportunities for HgCdTe infrared materials and detectors[J]. Appl. Phys. Rev. 2015, 2: 041303.

[35] Gilmore A S, Bangs J, and Gerrish A, VLWIR HgCdTe detector current-voltage analysis[J], J. Electron. Mater., 2006, 35: 1403.

[36] Wehner J G A, Musca C A, Sewell R H, et al. Mercury cadmium telluride resonant-cavity-enhanced photoconductive infrared detectors[J], Appl. Phys. Lett., 2005, 87: 211104.

[37] Wang K X, Yu Z F, Liu V, et al. Light trapping in photonic crystals[J]. Proc. SPIE., 2014, 9177, 91770N.

[38] Qiu W C, and Hu W D, Laser beam induced current microscopy and photocurrent mapping for junction characterization of infrared photodetectors, Sci.China-Phys. Mech.[J]Astron., 2015, 58, 027001.

[39] Keasler C A, and Bellotti E, A numerical study of broadband absorbers for visible to infrared detectors, Appl. Phys. Lett. 2011, 99: 091109.

[40] Pinkie B, and Bellotti E, Numerical Simulation of the Modulation Transfer Function in HgCdTe Detector Arrays, J. Electron. Mater., [J] 2014, 43: 2864.

[41] Hu W D, Chen X S, Yin F, et al, Analysis of temperature dependence of dark current mechanisms for long-wavelength HgCdTe photovoltaic infrared detectors[J]. J. Appl. Phys., 2009, 105: 104502.

[42] Qiu W C, Hu W D, Chen L, et al, Dark Current Transport and Avalanche Mechanism in HgCdTe Electron-Avalanche Photodiodes[J]. IEEE T. Electron Dev, 2015, 62: 1926.0052

胡伟达, 梁健, 越方禹, 陈效双, 陆卫. 新型亚波长陷光结构HgCdTe红外探测器研究进展[J]. 红外与毫米波学报, 2016, 35(1): 25. HU Wei-Da, LIANG Jian, YUE Fang-Yu, CHEN Xiao-Shuang, LU Wei. Recent progress of subwavelength photon trapping HgCdTe infrared detector[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 25.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!