光学学报, 2017, 37 (4): 0430002, 网络出版: 2017-04-10   

介质阻挡放电羽的等离子体参数光学诊断 下载: 505次

Optical Diagnosis on Plasma Parameters of a Plasma Plume Generated by Dielectric Barrier Discharge
作者单位
1 河北大学物理科学与技术学院, 河北 保定 071002
2 河北省光电信息材料重点实验室, 河北 保定 071002
摘要
利用介质阻挡放电装置在大气压下产生了稳定的氩气等离子体羽,利用示波器对等离子体羽的外加电压、电流和发光信号进行了记录。光学诊断结果表明,等离子体羽由高速运动的等离子体子弹组成。基于碰撞辐射模型,利用300~800 nm范围的光学发射谱诊断了等离子体羽的电子密度。结果表明,电子密度随外加电压和气体流量的增大而增大,随驱动频率的增大而减小。利用光谱法对等离子体羽的振动温度和转动温度进行了研究,发现其振动温度和转动温度均随外加电压和气体流量的增大而升高,随驱动频率的增大而降低。通过分析放电电场,对以上现象进行了定性解释。
Abstract
A stable argon plasma plume is generated at atmospheric pressure by a plasma jet in dielectric barrier discharge configurations. The applied voltage, the current and the light emission signal are simultaneously recorded by an oscilloscope. Results indicate that the plasma plume is composed of successive fast-moving plasma bullets. Based on collisional-radiative model, the electron density of the plasma plume is investigated by optical emission spectrum in the range from 300 nm to 800 nm. Optical diagnosis shows that the electron density increases with the increasing applied voltage or gas flow rate. However, it decreases with the increasing driving frequency. The vibrational temperature and the rotational temperature of the plasma plume are also studied by optical emission spectroscopy. It is found that both of them increase with the increasing applied voltage or gas flow rate, and decrease with the increasing driving frequency. The aforementioned phenomena are qualitatively explained by analyzing the electric field of discharge.
参考文献

[1] 王进军, 王晓亮, 张景文, 等. 硼掺杂金刚石薄膜同质外延生长及肖特基势垒二极管制备[J]. 光学学报, 2016, 36(7): 0716001.

    Wang Jinjun, Wang Xiaoliang, Zhang Jingwen, et al. Boron-doped diamond thin films homoepitaxial growth and preparation of Schottky barrier diode[J]. Acta Optica Sinica, 2016, 36(7): 0716001.

[2] 李国伟, 曹 为, 吴建鹏, 等. MPCVD等离子体中甲烷体积分数对基团分布的影响[J]. 光学学报, 2013, 33(4): 0430005.

    Li Guowei, Cao Wei, Wu Jianpeng, et al. Influence of methane volume fraction on the radical distribution in MPCVD plasma[J]. Acta Optica Sinica, 2013, 33(4): 0430005.

[3] Chen G L, Chen S H, Zhou M Y, et al. The preliminary discharging characterization of a novel APGD plume and its application in organic contaminant degradation[J]. Plasma Sources Science and Technology, 2006, 15(4): 603-608.

[4] Mastanaiah N, Banerjee P, Johnson J A, et al. Examining the role of ozone in surface plasma sterilization using dielectric barrier discharge (DBD) plasma[J]. Plasma Processes and Polymers, 2013, 10(12): 1120-1133.

[5] Stoffels E, Keift I E, Sladek R E J, et al. Plasma needle for in vivo medical treatment: recent developments and perspectives[J]. Plasma Sources Science and Technology, 2006, 15(4): S169-S180.

[6] Fridman G, Peddinghaus M, Balasubramanian M, et al. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air[J]. Plasma Chemistry and Plasma Processing, 2006, 26(4): 425-442.

[7] Ammelt E, Astrov Y A, Purwins H G. Stripe turing structures in a two-dimensional gas discharge system[J]. Physical Review E, 1997, 55(6): 6731-6740.

[8] Spiekermeier S, Schrder D, Schulz-von der Gathen V, et al. Helium metastable density evolution in a self-pulsing mu-APPJ[J]. Journal of Physics D: Applied Physics, 2015, 48(3): 035203.

[9] Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Applied Physics Letters, 2008, 93(11): 111501.

[10] Li X C, Di C, Jia P Y, et al. Characteristics of a direct current-driven plasma jet operated in open air[J]. Applied Physics Letters, 2013, 103(14): 144107.

[11] Li X C, Zhang P P, Jia P Y, et al. Dynamics of atmospheric pressure plasma plumes in the downstream and upstream regions[J]. Plasma Processes and Polymers, 2016, 13(4): 480-487.

[12] Kiriu S, Miyazoe H, Takamine F, et al. Development of a dielectric-barrier discharge enhanced microplasma jet[J]. Applied Physics Letters, 2009, 94(19): 191502.

[13] Nie Q Y, Ren C S, Wang D Z, et al. Self-organized pattern formation of an atmospheric pressure plasma jet in a dielectric barrier discharge configuration[J]. Applied Physics Letters, 2007, 90(22): 221504.

[14] Li X C, Chang Y Y, Jia P Y, et al. Development of a dielectric barrier discharge enhanced plasma jet in atmospheric pressure air[J]. Physics of Plasmas, 2012, 19(9): 093504.

[15] Jiang N, Ji A L, Cao Z X. Atmospheric pressure plasma jet: effect of electrode configuration, discharge behavior, and its formation mechanism[J]. Journal of Applied Physics, 2009, 106(1): 013308.

[16] Lu X P, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012, 21(3): 034005.

[17] Sands B L, Ganguly B N, Tachibana K. A streamer-like atmospheric pressure plasma jet[J]. Applied Physics Letters, 2008, 92(15): 151503.

[18] Jarrige J, Laroussi M, Karakas E. Formation and dynamics of plasma bullets in a non-thermal plasma jet: influence of the high-voltage parameters on the plume characteristics[J]. Plasma Sources Science and Technology, 2010, 19(6): 065005.

[19] Hong Y, Lu N, Pan J, et al. Discharge characteristics of an atmospheric pressure argon plasma jet generated with screw ring-ring electrodes in surface dielectric barrier discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786.

[20] Zhu X M, Pu Y K, Balcon N, et al. Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy[J]. Journal of Physics D: Applied Physics, 2009, 42(14): 142003.

[21] Li Q, Li J T, Zhu W C, et al. Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets[J]. Applied Physics Letters, 2009, 95(14): 141502.

[22] Boeuf J P, Yang L L, Pitchford L C. Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2012, 46(1): 015201.

[23] Schmidt-Bleker A, Norberg S A, Winter J, et al. Propagation mechanisms of guided streamers in plasma jets: the influence of electronegativity of the surrounding gas[J]. Plasma Sources Science and Technology, 2015, 24(3): 035022.

[24] 李雪辰, 楚婧娣, 鲍文婷, 等. 直流激励等离子体喷枪的发光特性研究[J]. 光学学报, 2015, 35(7): 0704001.

    Li Xuechen, Chu Jingdi, Bao Wenting, et al. Study on discharge charateristics of a direct current-voltage excited plasma jet[J]. Acta Optica Sinica, 2015, 35(7): 0704001.

[25] Lu X P, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments[J]. Physics Reports, 2014, 540(3): 123-166.

[26] Wu S, Lu X. The role of residual charges in the repeatability of the dynamics of atmospheric pressure room temperature plasma plume[J]. Physics of Plasmas, 2014, 21(12): 123509.

[27] Song M A, Lee Y W, Chung T H. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy[J]. Physics of Plasmas, 2011, 18(2): 023504.

[28] Williamson J M, Bletzinger P, Ganguly B N. Gas temperature determination in a N2/Ar dielectric barrier discharge by diode-laser absorption spectroscopy and resolved plasma emission[J]. Journal of Physics D: Applied Physics, 2004, 37(12): 1658-1663.

[29] Song M A, Lee Y W, Chung T H. Characterization of an inductively coupled nitrogen-argon plasma by Langmuir probe combined with optical emission spectroscopy[J]. Physics of Plasmas, 2011, 18(2): 023504.

[30] Thiyagarajan M, Sarani A, Nicula C. Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications[J]. Journal of Applied Physics, 2013, 113(23): 233302.

李亚茹, 李雪辰, 贾鹏英, 张盼盼, 耿金伶. 介质阻挡放电羽的等离子体参数光学诊断[J]. 光学学报, 2017, 37(4): 0430002. Li Yaru, Li Xuechen, Jia Pengying, Zhang Panpan, Geng Jinling. Optical Diagnosis on Plasma Parameters of a Plasma Plume Generated by Dielectric Barrier Discharge[J]. Acta Optica Sinica, 2017, 37(4): 0430002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!