光子学报, 2018, 47 (8): 0847016, 网络出版: 2018-09-16  

液体激光诱导转移的格子玻尔兹曼仿真研究

Lattice Boltzmann Simulation of Laser-induced Transfer of Liquid
作者单位
1 广东工业大学 机电工程学院, 广州 510006
2 广州市非传统制造技术及装备重点实验室, 广州 510006
摘要
采用介观尺度的格子玻尔兹曼方法, 结合气-液两相流模型, 对藻酸盐溶液的激光诱导液体转移进行了三维模拟.为获取气-液两相流模型的入口条件, 引入Rayleigh-Plesset方程对等离子体气泡的演化进行计算.数值模拟结果与之前的实验结果吻合, 反映了气泡形状变化和液体的向前向后转移现象.仿真研究表明液体的激光诱导转移机制主要与气泡动力学有关, 气泡的快速膨胀将引发向前转移, 而气泡的剧烈收缩是形成向后转移的主要原因.
Abstract
The mesoscopic lattice Boltzmann method and the gas-liquid two-phase flow model are used to simulate the Laser-induced Forward Transfer (LIFT) of liquid. Rayleigh-Plesset equation is introduced to calculate the evolution of the plasma bubble, so as to obtain the inlet boundary conditions for the two-phase LBM model of the LIFT. The simulation results agree well with former experimental observations. The evolution of bubble shape, the forward and backward ejections are all faithfully represented, which suggests that the dynamics of the laser-induced bubble is mainly responsible for the material transfer in LIFT. The forward liquid ejection is related to the fast expansion of the laser-induced bubble, while the backward ejection is caused by the collapse of the bubble.
参考文献

[1] ZENOU M, SA′AR A, KOTLER Z. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures[J]. Scientific Reports, 2015, 5: 17265.

[2] INUI T, MANDAMPARAMBIL R, ARAKI T,et al. Laser-induced forward transfer of high-viscosity silver precursor ink for non-contact printed electronics[J]. Rsc Advances, 2015, 5(95): 77942-77947.

[3] KOUNDOURAKIS G, ROCKSTUHL C, PAPAZOGLOU D, et al. Laser printing of active optical microstructures[J]. Applied Physics Letters, 2001, 78(7): 868-870.

[4] SKARDAL A, ATALA A. Biomaterials for integration with 3-D Bioprinting[J].Annals of Biomedical Engineering, 2015, 43(3): 730-746.

[5] FARID N, HARILAL S S, DING H, et al. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures[J]. Journal of Applied Physics, 2014, 115(3): 277.

[6] 李明, 张宏超, 沈中华,等. 激光导致水击穿和等离子体形成过程的物理分析[J]. 光子学报, 2005, 34(11): 1610-1614.

    LI Ming, ZHANG Hong-chao, SHEN Zhong-hua, et al. Physical analyses of optical breakdown and plasma formation in water induced by laser[J]. Acta Photonica Sinica, 2005, 34(11): 1610-1614.

[7] FREEMAN J R, HARILAL S S, DIWAKAR P K, et al. Comparison of optical emission from nanosecond and femtosecond laser produced plasma in atmosphere and vacuum conditions[J]. Spectrochimica Acta Part B Atomic Spectroscopy, 2013, 87(9): 43-50.

[8] BRUJAN E A, NAHEN K, SCHMIDT P, et al. Dynamics of laser-induced cavitation bubbles near an elastic boundary used as a tissue phantom[J]. Journal of Fluid Mechanics, 2001, 433(433): 251-281.

[9] HILGENFELDT S, BRENNER M P, GROSSMANN S, et al. Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles[J]. Journal of Fluid Mechanics, 2017, 365(365): 171-204.

[10] GRUENE M, UNGER C, KOCH L, et al. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting[J]. Biomedical Engineering, 2011, 10(1): 19.

[11] BROWN M S. Experimental and numerical study of laser-induced forward transfer printing of liquids[M]. Dissertations & Theses - Gradworks, 2011.

[12] 史冬岩, 王志凯, 张阿漫. 一种模拟气液两相流的格子波尔兹曼改进模型[J]. 力学学报, 2014, 46(2): 224-233.

    SHI Dong-yan, WANG Zhi-kai, ZHANG A-man. A modified lattice boltzmann model for simulating gas-liquid two-phase flow[J]. Journal of Mechanics, 2014, 46(2): 224-233.

[13] 郭照立. 格子Boltzmann方法的原理及应用[M]. 科学出版社, 2009.

    GUO Zhao-li. The principle and application of lattice Boltzmann method[M]. Science Press, 2009.

[14] MOHANMAD A A. Lattice Boltzmann method: fundamentals and engineering applications with computer codes[M]. London Springer, 2011: 15- 17.

[15] MAO X, WEN S B, RUSSO R E. Time resolved laser-induced plasma dynamics[J]. Applied Surface Science, 2007, 253(15): 6316-6321.

[16] SANO Y, MUKAI N, OKAZAKI K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments & Methods in Physics Research, 1997, 121(1): 432-436.

[17] FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser‐produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[18] BODNAR R J. A method of calculating fluid inclusion volumesbased on vapor bubble diameters and P-V-T-X properties of inclusion fluids[J]. Economic Geology, 1983, 78(3): 535-542.

[19] 李更来, 陈红梅. 气体绝热指数的计算方法[J]. 油气田地面工程, 1997, (5): 15-16.

    LI Geng-lai, CHEN Hong-mei. Gas adiabatic index calculation method[J]. Oil and Gas Field Surface Engineering, 1997, (5): 15-16.

[20] INOGAMOV N A, ZHAKHOVSKII V V, KHOKHLOV V A. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse[J]. Journal of Experimental & Theoretical Physics, 2015, 120(1): 15-48.

[21] BRENNEN CE. Cavitation and bubble dyanmics[M]. Oxford University Press, 1995.

[22] YANG G W. Laser ablation in liquids: applications in the synthesis of nanocrystals[J].Cheminform, 2007, 38(38): 648-698.

黄亚军, 蔡文莱, 陈英怀, 黄志刚. 液体激光诱导转移的格子玻尔兹曼仿真研究[J]. 光子学报, 2018, 47(8): 0847016. HUANG Ya-jun, CAI Wen-lai, CHEN Ying-huai, HUANG Zhi-gang. Lattice Boltzmann Simulation of Laser-induced Transfer of Liquid[J]. ACTA PHOTONICA SINICA, 2018, 47(8): 0847016.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!