激光与光电子学进展, 2017, 54 (3): 030801, 网络出版: 2017-03-08  

基于Plateau-Rayleigh不稳定性探讨水柱与激光光环的依赖关系

Relationship Between Water Jet and Laser Ring Based on Plateau-Rayleigh Instability
作者单位
1 北京交通大学理学院, 北京 100044
2 北京交通大学土木建筑工程学院, 北京 100044
摘要
在低流速条件下,当自由下落的水流落在刚性平面上时,如果水柱与平面的接触点被激光照亮,可以观察到若干环绕在水柱上的光环。实验证明,接触点附近的稳定波纹结构是形成水柱光环的必要条件。根据伯努利方程和由Plateau-Rayleigh不稳定性理论得到的扰动波传播的色散关系,建立波纹稳定方程,进而通过实验探究环绕水柱的光环的性质。理论和实验结果表明,光环的疏密、亮度和数量与水柱的下落高度和初始流速、刚性平面种类以及俯视角度有直接关系。光环随着水柱的下落高度和初始流速的增大而变得密集。激光在刚性平面损失的能量越少,则光环越亮。存在一个观察光环的合适俯视角度区间,俯视角度越大,观察到的光环越多,因此观察光环时要尽量俯视。
Abstract
When a water jet freely falls onto a rigid plane with a low flow rate, light rings around the water jet can be observed if the point that the water jet contacts with the plane is illuminated by a laser beam. It is proved experimentally that stable ripple structures surrounding the contact point are essential to form the light rings of water jet. The equation of corrugated stability can be established based on the Bernoulli′s equation and the dispersion relationship of disturbance wave propagation derived by the Plateau-Rayleigh instability theory, and then experiments are designed to investigate the properties of the light rings of water jet. The theoretical and experimental results show that the spacing, brightness and quantity of the light rings are straightly related to the falling height and the initial flow velocity of the water jet, the variety of the rigid plane and the depression angle. The spacing between the light rings becomes smaller with the increasing falling height and initial flow velocity of the water jet. The less the energy loss of laser in a rigid plane is, the brighter the light rings are. There is a proper depression angle range to observe the light rings. It is concluded that the bigger the depression angle is, the more the observed light rings are. Consequently it is better to overlook the light rings for a satisfied observation effect.
参考文献

[1] Rayleigh L. On the instability of jets[J]. Proc London Math Soc, 1879, s1-10(1): 4-13.

[2] Rayleigh L. On the stability, or instability, of certain fluid motions[J]. Proc London Math Soc, 1879, s1-11(1): 57-72.

[3] Leib S J, Goldstein M E. The generation of capillary instabilities on a liquid jet[J]. J Fluid Mech, 1986, 168: 479-500.

[4] Eggers J. Nonlinear dynamics and breakup of free-surface flow[J]. Rev Mod Phys, 1997, 69(3): 865-929.

[5] 杨 柳, 陈燕萍, 徐剑秋, 等. 激光诱导击穿光谱在液体样品分析中的应用[J]. 激光与光电子学进展, 2014, 51(10): 100001.

    Yang Liu, Chen Yanping, Xu Jianqiu, et al. Laser-induced breakdown spectroscopy for analysis of liquids[J]. Laser & Optoelectronics Progress, 2014, 51(10): 100001.

[6] 梁忠诚, 赵 瑞. 微流控光学及其应用[J]. 激光与光电子学进展, 2008, 45(6): 16-23.

    Liang Zhongcheng, Zhao Rui. Optofluidics and its potential applications[J]. Laser & Optoelectronics Progress, 2008, 45(6): 16-23.

[7] 扈映茹, 吕 岑, 宋 晨. 液滴分析技术[J]. 激光与光电子学进展, 2008, 45(1): 73-77.

    Hu Yingru, Lü Cen, Song Chen. Liquid droplets analysis technology[J]. Laser & Optoelectronics Progress, 2008, 45(1): 73-77.

[8] Dendukuri D, Doyle P S. The synthesis and assembly of polymeric microparticles using microfluidics[J]. Adv Mater, 2009, 21(41): 4071-4086.

[9] Shabahang S, Kaufman J J, Deng D S, et al. Observation of Plateau-Rayleigh capillary instability in multi-material optical fibers[J]. Appl Phys Lett, 2011, 99(16): 161909.

[10] Kaufman J J, Tao G M, Shabahang S, et al. Structured spheres generated by an in-fibre fluid instability[J]. Nature, 2012, 487: 463-467.

[11] Rayleigh L. The form of standing waves on the surface of a running stream[J]. Proc Lond Math Soc, 1883, s1-15(1): 69-78.

[12] Wada Y. On the steady surface ripples of a cylindrical flow[J]. J Phys Soc Jpn, 1950, 5: 259-262.

[13] 巩欣亚, 张 煜, 张永战, 等. 竖直液柱与水平液面作用激起毛细波探究[J]. 实验室研究与探索, 2015, 34(2): 29-33.

    Gong Xinya, Zhang Yu, Zhang Yongzhan, et al. Capillary waves on vertical jets impinging upon different types of liquid surfaces[J]. Research and Exploration in Laboratory, 2015, 34(2): 29-33.

[14] Awati K M, Howes T. Stationary waves on cylindrical fluid jets[J]. Am J Phys, 1996, 64(6): 808-811.

[15] Hancock M J, Bush J W M. Fluid pipes[J]. J Fluid Mech, 2002, 466: 285-304.

[16] Watson E J. The radial spread of a liquid jet over a horizontal plane[J]. J Fluid Mech, 1964, 20(3): 481-499.

宫啸, 朱亚彬, 谢佳宇, 马重, 彭继迎. 基于Plateau-Rayleigh不稳定性探讨水柱与激光光环的依赖关系[J]. 激光与光电子学进展, 2017, 54(3): 030801. Gong Xiao, Zhu Yabin, Xie Jiayu, Ma Zhong, Peng Jiying. Relationship Between Water Jet and Laser Ring Based on Plateau-Rayleigh Instability[J]. Laser & Optoelectronics Progress, 2017, 54(3): 030801.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!