中国光学, 2019, 12 (3): 503, 网络出版: 2019-09-20   

无拖曳控制技术研究及在我国空间引力波探测中的应用

Drag-free control and its application in China′s space gravitational wave detection
作者单位
中国科学院 微小卫星创新研究院, 上海 201203
引用该论文

邓剑峰, 蔡志鸣, 陈琨, 侍行剑, 余金培, 李华旺. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学, 2019, 12(3): 503.

DENG Jian-feng, CAI Zhi-ming, CHEN Kun, SHI Xing-jian, YU Jin-pei, LI Hua-wang. Drag-free control and its application in China′s space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 503.

参考文献

[1] 胡明,李洪银,周泽兵.无拖曳控制技术及其应用[J].载人航天,2013,19(2): 61-69.

    HU M,LI H Y,ZHOU Z B. Drag-free control technology and its applications[J]. Manned Spaceflight,2013,19(2): 61-69.(in Chinese)

[2] 刘志国,朴云松,乔从丰.多波段引力波宇宙研究和空间太极计划[J].现代物理知识,2016,28(5): 28-33.

    LIU ZH G,PIAO Y S,QIAO C F. Research on multi-band gravitational wave universe and “Taiji” plan[J]. Modern Physics,2016,28(5): 28-33.(in Chinese)

[3] 施梨,曹喜滨,张锦绣,等.无阻力卫星发展现状[J].宇航学报,2010,31(6): 1511-1520.

    SHI L,CAO X B,ZHANG J X,et al.. Survey of drag-free satellite[J]. Journal of Astronautics,2010,31(6): 1511-1520.(in Chinese)

[4] 邹奎,苟兴宇,薛大同.重力梯度测量卫星无拖曳控制技术[J].空间控制技术与应用,2017,43(2): 28-35.

    ZOU K,GOU X Y,XUE D T. An overview on drag-free control for gravitational gradiometry satellites[J]. Aerospace Control and Application,2017,43(2): 28-35.(in Chinese)

[5] LANGE B. The drag-free satellite[J]. AIAA Journal,1964,2(9): 1590-1606.

[6] LANGE B. The control and use of drag-free satellites[D]. Stanford California: Stanford University,1964.

[7] Staff of the Space Department, Staff of the Guidance, Control Laboratory. A satellite freed of all but gravitational forces: “Triad I”[J]. Journal of Spacecraft and Rockets,1974,11(9): 637-644.

[8] BUCHMAN S,EVERITT C W F,PARKINSON B,et al.. The gravity probe B relativity mission[J]. Advances in Space Research,2000,25(6): 1177-1180.

[9] BENCZE W J,DEBRA D B,HERMAN L,et al.. On-orbit performance of the Gravity Probe B drag-free translation control system[C]. Proceedings of the 29th AAS Guide Control. American Astronautical Society,2006.

[10] CANUTO E,MOLANO A,MASSOTTI L. Drag-free control of the GOCE satellite: noise and observer design[J]. IEEE Transactions on Control Systems Technology,2010,18(2): 501-509.

[11] SECHI G,BUONOCORE M,COMETTO F,et al.. In-flight results from the drag-free and attitude control of GOCE satellite[J]. IFAC Proceedings Volumes, 2011,44(1): 733-740.

[12] CANUTO E,MASSOTTI L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE[J]. Acta Astronautica,2009,64(2-3): 325-344.

[13] GHISI C E,STEIGER C,ROMANAZZO M,et al.. Drag-free attitude and orbit control system performance of ESA′s GOCE mission during low orbit operations and de-orbiting[C]. Proceedings of Space Operations: Innovations, Inventions, and Discoveries, Progress in Astronautics and Aeronautics,AIAA,2014: 461-487.

[14] EVERS W J. GOCE dynamical analysis and drag free mode control[R]. Eindhoven: Technische Universiteit Eindhoven,2004.

[15] ARMANO M,AUDLEY H,AUGER G,et al.. Free-flight experiments in LISA Pathfinder[J]. Journal of Physics: Conference Series,2015,610(1): 012006.

[16] PRADELS G,TOUBOUL P. In-orbit calibration approach of the MICROSCOPE experiment for the test of the equivalence principle at 10-15[J]. Classical and Quantum Gravity,2003,20(13): 2677-2688.

[17] CHHUN R,RODRIGUES M,TOUBOUL P. Microscope mission and performance[J]. Nuclear Physics B-Proceedings Supplements,2002,113(1-3): 277-281.

[18] EISNER A,YUHASZ R. A flight evaluation of the DISCOS system on the TRIAD satellite[R]. JHU/APL TG-1216,Silver Spring: The Johns Hopkins Univ.,Applied Physics Lab.,1973.

[19] LI J,BENCZE W J,DEBRA D B,et al.. On-orbit performance of gravity probe B drag-free translation control and orbit determination[J]. Advances in Space Research,2007,40(1): 1-10.

[20] ARMANO M,AUDLEY H,AUGER G,et al.. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters,2016,116(23): 231101.

[21] FICHTER W,GATH P,VITALE S,et al.. LISA Pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity,2005,22(10): S139-S148.

[22] ARMANO M,AUDLEY H,BAIRD J,et al.. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz[J]. Physical Review Letters,2018,120(6): 061101.

[23] FICHTER W,SCHLEICHER A,BENNANI S,et al.. Closed loop performance and limitations of the LISA pathfinder drag-free control system[C]. Proceedings of AIAA Guidance,Navigation and Control Conference and Exhibit,AIAA,2007.

[24] 王世华,陈秀玲,徐淦.利用三光束激光干涉仪评估纳米平台的移动性能[J].光学 精密工程,2011,19(9): 2284-2292.

    WANG SH H,CHEN X L,XU G. Evaluation of nano-stage movement by using triple-beam laser interferometer[J]. Opt. Precision Eng.,2011,19(9): 2284-2292.(in Chinese)

[25] 罗子人,白姗,边星,等.空间激光干涉引力波探测[J].力学进展,2013,43(4): 415-447.

    LUO Z R,BAI SH,BIAN X,et al.. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics,2013,43(4): 415-447.(In Chinese)

[26] 王智,沙巍,陈哲,等.空间引力波探测望远镜初步设计与分析[J].中国光学, 2018,11(1): 131-151.

    WANG ZH,SHA W,CHEN ZH,et al.. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics,2018,11(1): 131-151.(in Chinese)

[27] DEBRA D B. Drag-free spacecraft as platforms for space missions and fundamental physics[J]. Classical and Quantum Gravity,1997,14(6): 1549-1555.

[28] SPEAKE C C,ANDREWS P L. Capacitive sensing for drag-free satellites[J]. Classical and Quantum Gravity,1997,14(6): 1557-1565.

[29] WEBER W J,CAVALLERI A,DOLESI R,et al.. Position sensors for LISA drag-free control[J]. Classical and Quantum Gravity,2002,19(7): 1751-1756.

[30] CLAVIER O H. Development of a superconducting position sensor for the satellite test of the equivalence principle[D]. Stanford: Stanford University,2001.

[31] KHLER J,BEJHED J,KRATZ H,et al.. A hybrid cold gas microthruster system for spacecraft[J]. Sensors and Actuators A: Physical,2002,97-98: 587-598.

[32] ZIEMER J,MERKOWITZ S. Microthrust propulsion for the LISA mission[C]. Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,AIAA,2004.

[33] MERKOWITZ S M,MAGHAMI P G,SHARMA A,et al.. A μNewton thrust-stand for LISA[J]. Classical and Quantum Gravity,2002,19(7): 1745-1750.

[34] NICOLINI D,DEL AMO J G,SACCOCCIA G. Plasma measurements in the ESA electric propulsion laboratory[C]. Proceedings of the 7th Spacecraft Charging Technology Conference,European Space Agency,2001: 389-394.

[35] HAINES A R. Development of a drag-free control system[C]. Processing of the 14th Annual AIAA/USU conference on small satellite,AIAA,2000.

[36] LEACH R. Development of hardware for a drag-free control system[J]. Proceedings of SPIE,2003,4856: 19-31.

[37] 李传江,王玉爽,马广富,等.带卡尔曼估计器的无拖曳卫星干扰补偿控制[J].哈尔滨工业大学学报,2012,44(7): 8-13.

    LI CH J,WANG Y SH,MA G F,et al.. Disturbance compensation control for drag-free satellite with Kalman estimator[J]. Journal of Harbin Institute of Technology,2012,44(7): 8-13.(in Chinese)

[38] CANUTO E. Embedded model control: outline of the theory[J]. ISA Transactions,2007,46(3): 363-377.

[39] CANUTO E. Drag-free and attitude control for the GOCE satellite [J]. Automatica,2008,44(7): 1766-1780.

邓剑峰, 蔡志鸣, 陈琨, 侍行剑, 余金培, 李华旺. 无拖曳控制技术研究及在我国空间引力波探测中的应用[J]. 中国光学, 2019, 12(3): 503. DENG Jian-feng, CAI Zhi-ming, CHEN Kun, SHI Xing-jian, YU Jin-pei, LI Hua-wang. Drag-free control and its application in China′s space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 503.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!