光学 精密工程, 2020, 28 (6): 1275, 网络出版: 2020-06-04   

高集成度小型化共心多尺度光学系统设计

Design of high integration and miniaturization concentric multiscale optical system
作者单位
西安电子科技大学 物理与光电工程学院,陕西 西安 710071
引用该论文

刘飞, 刘佳维, 邵晓鹏. 高集成度小型化共心多尺度光学系统设计[J]. 光学 精密工程, 2020, 28(6): 1275.

LIU Fei, LIU Jia-wei, SHAO Xiao-peng. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 2020, 28(6): 1275.

参考文献

[1] 韩昌元. 光电成像系统的性能优化[J]. 光学 精密工程, 2015, 23(1): 1-9. HAN CH Y. Performance optimization of electro-optical imaging systems[J]. Opt. Precision Eng., 2015, 23(1): 1-9. (in Chinese)

    韩昌元. 光电成像系统的性能优化[J]. 光学 精密工程, 2015, 23(1): 1-9. HAN CH Y. Performance optimization of electro-optical imaging systems[J]. Opt. Precision Eng., 2015, 23(1): 1-9. (in Chinese)

[2] 姚园, 许永森, 丁亚林, 等. 大视场三线阵航空测绘相机光学系统设计[J]. 光学 精密工程, 2018, 26(9): 2335-2344. YAO Y, XU Y S, DING Y L, et al.. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Opt. Precision Eng., 2018, 26(9): 2335-2344. (in Chinese)

    姚园, 许永森, 丁亚林, 等. 大视场三线阵航空测绘相机光学系统设计[J]. 光学 精密工程, 2018, 26(9): 2335-2344. YAO Y, XU Y S, DING Y L, et al.. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Opt. Precision Eng., 2018, 26(9): 2335-2344. (in Chinese)

[3] 张宗存, 丁学专, 杨波, 等. 超大幅宽低畸变成像系统设计与分析[J]. 红外与毫米波学报, 2017, 36(6): 732-738. ZHANG Z C, DING X ZH, YANG B, et al.. Design and analysis of super large width and low distortion imaging system[J]. Journal of Infrared and Millimeter Waves, 2017, 36 (6): 732-738. (in Chinese)

    张宗存, 丁学专, 杨波, 等. 超大幅宽低畸变成像系统设计与分析[J]. 红外与毫米波学报, 2017, 36(6): 732-738. ZHANG Z C, DING X ZH, YANG B, et al.. Design and analysis of super large width and low distortion imaging system[J]. Journal of Infrared and Millimeter Waves, 2017, 36 (6): 732-738. (in Chinese)

[4] FAN L R, LU L J. Design of a simple fisheye lens[J]. Applied Optics, 2019, 58(19): 5311-5319.

    FAN L R, LU L J. Design of a simple fisheye lens[J]. Applied Optics, 2019, 58(19): 5311-5319.

[5] JEONG K, KIM J, LEE L P. Biologically inspired artificial compound eyes[J]. Science, 2006, 312(5773): 557-561.

    JEONG K, KIM J, LEE L P. Biologically inspired artificial compound eyes[J]. Science, 2006, 312(5773): 557-561.

[6] LEE W B, JANG H, PARK S, et al.. COMPU-EYE: a high resolution computational compound eye[J]. Optics Express, 2016, 24(3): 2013-2026.

    LEE W B, JANG H, PARK S, et al.. COMPU-EYE: a high resolution computational compound eye[J]. Optics Express, 2016, 24(3): 2013-2026.

[7] ZHANG SH Q, ZHOU L Y, XUE CH X, et al.. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses[J]. Applied Optics, 2017, 56(26): 7442-7449.

    ZHANG SH Q, ZHOU L Y, XUE CH X, et al.. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses[J]. Applied Optics, 2017, 56(26): 7442-7449.

[8] COSSAIRT O S, MIAU D, NAYAR S K. Scaling law for computational imaging using spherical optics[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 2011, 28(12): 2540-2553.

    COSSAIRT O S, MIAU D, NAYAR S K. Scaling law for computational imaging using spherical optics[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 2011, 28(12): 2540-2553.

[9] BRADY D J, GEHM M E, STACK R A, et al.. Multiscale gigapixel photography[J]. Nature, 2012, 486(7403): 386-389.

    BRADY D J, GEHM M E, STACK R A, et al.. Multiscale gigapixel photography[J]. Nature, 2012, 486(7403): 386-389.

[10] LLULL P, BANGE L, PHILLIPS Z, et al.. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2015, 2(12): 1086-1089.

    LLULL P, BANGE L, PHILLIPS Z, et al.. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2015, 2(12): 1086-1089.

[11] PANG W B, BRADY D J. Field of view in monocentric multiscale cameras[J]. Applied Optics, 2018, 57(24): 6999-7005.

    PANG W B, BRADY D J. Field of view in monocentric multiscale cameras[J]. Applied Optics, 2018, 57(24): 6999-7005.

[12] SHEN Y, WANG H, WANG C C, et al.. Optical design of a distributed zoom concentric multiscale meteorological instrument[J]. Applied Optics, 2018, 57(18): 5168-5179.

    SHEN Y, WANG H, WANG C C, et al.. Optical design of a distributed zoom concentric multiscale meteorological instrument[J]. Applied Optics, 2018, 57(18): 5168-5179.

[13] 邵洪禹, 李英超, 王超, 等. 超分辨望远光学系统像差影响及优化设计[J]. 中国光学, 2020, 13(1): 106-120. SHAO H Y, LI Y CH, WANG CH, et al.. Aberration effect and optimization design of super-resolution telescope optical system[J]. Chinese Optics, 2020, 13(1): 106-120. (in Chinese)

    邵洪禹, 李英超, 王超, 等. 超分辨望远光学系统像差影响及优化设计[J]. 中国光学, 2020, 13(1): 106-120. SHAO H Y, LI Y CH, WANG CH, et al.. Aberration effect and optimization design of super-resolution telescope optical system[J]. Chinese Optics, 2020, 13(1): 106-120. (in Chinese)

[14] 姜洋, 全向前, 杜杰, 等. 全海深大视场超高清光学系统设计[J]. 光学 精密工程, 2019, 27(11): 2289-2295. JIANG Y, QUAN X Q, DU J, et al.. Design of deep-sea optical imaging system with wide field of view and ultra-high resolution[J]. Opt. Precision Eng., 2019, 27(11): 2289- 2295. (in Chinese)

    姜洋, 全向前, 杜杰, 等. 全海深大视场超高清光学系统设计[J]. 光学 精密工程, 2019, 27(11): 2289-2295. JIANG Y, QUAN X Q, DU J, et al.. Design of deep-sea optical imaging system with wide field of view and ultra-high resolution[J]. Opt. Precision Eng., 2019, 27(11): 2289- 2295. (in Chinese)

[15] 陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学, 2020, 13(1): 179-188. CHEN SH N, JIANG H L, WANG CH Y, et al.. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 2020, 13(1): 179-188. (in Chinese)

    陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学, 2020, 13(1): 179-188. CHEN SH N, JIANG H L, WANG CH Y, et al.. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 2020, 13(1): 179-188. (in Chinese)

[16] 刘飞, 魏雅喆, 韩平丽, 等. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计[J]. 物理学报, 2019, 68(8): 99-108. LIU F, WEI Y ZH, HAN P L, et al.. Design of monocentric wide field-of-view and high-resolution computational imaging system[J]. Acta Physica Sinica, 2019, 68(8): 99-108. (in Chinese)

    刘飞, 魏雅喆, 韩平丽, 等. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计[J]. 物理学报, 2019, 68(8): 99-108. LIU F, WEI Y ZH, HAN P L, et al.. Design of monocentric wide field-of-view and high-resolution computational imaging system[J]. Acta Physica Sinica, 2019, 68(8): 99-108. (in Chinese)

[17] FOOTE P C, WOODSON R A. Lens design and tolerance analysis methods and results[J]. Journal of the Optical Society of America, 1948, 38(7): 590-599.

    FOOTE P C, WOODSON R A. Lens design and tolerance analysis methods and results[J]. Journal of the Optical Society of America, 1948, 38(7): 590-599.

刘飞, 刘佳维, 邵晓鹏. 高集成度小型化共心多尺度光学系统设计[J]. 光学 精密工程, 2020, 28(6): 1275. LIU Fei, LIU Jia-wei, SHAO Xiao-peng. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 2020, 28(6): 1275.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!