光学 精密工程, 2020, 28 (6): 1275, 网络出版: 2020-06-04   

高集成度小型化共心多尺度光学系统设计

Design of high integration and miniaturization concentric multiscale optical system
作者单位
西安电子科技大学 物理与光电工程学院,陕西 西安 710071
摘要
针对实时广域高分辨率成像需求同时保证系统结构的小型化与轻量化,设计了高集成度共心多尺度光学成像系统。该系统采用伽利略型共心多尺度成像结构将球透镜与次级相机阵列进行级联 ,以充分利用双层共心球透镜视场大且全视场成像效果一致性好的特点,并发挥伽利略型共心多尺度结构体积紧凑的优势。此外,通过设计相机阵列的排列方式进一步减少相机使用数量,实现轻量 化。通过全系统联动设计与优化,系统的调制传递函数曲线在特征频率270 lp/mm处可达0.3,全视场弥散斑均方根(RMS)半径均小于探测器像元尺寸1.85 μm,成像效果优良,且公差分析结果表明 系统易加工制造。该系统不仅能够有效实现大视场高分辨率成像,而且具有低的结构复杂度及更紧凑的结构,应用前景广阔。
Abstract
A highly integrated optical imaging system with a wide field of view (FOV) and high resolution was proposed to meet the performance requirements of modern photoelectric imaging systems. The system consisted of a concentric spherical lens and an array of micro-cameras arranged in the Galilean concentric multiscale structure. A wide FOV was achieved owing to the structure of the spherical lens. The multiscale micro-camera array enabled capturing of images at high resolution and with a wide field of view. Further, the Galilean structure made the system more compact. In addition, the arrangement of the camera array was designed to reduce the number of cameras and realize a lightweight system. By optimizing the design of the whole system, the modulation transfer function (MTF) can reach 0.3 at a frequency of 270 lp/mm.The root mean square (RMS) radius of the full field of view of the system is also smaller than the detector pixel size of 1.85 μm, indicating an excellent imaging effect from the system. Moreover, results of the tolerance analysis indicate that the system is easy to manufacture. Thus, the system not only realizes a wide field of view and high- resolution imaging, but also has low structure complexity and a compact volume structure.
参考文献

[1] 韩昌元. 光电成像系统的性能优化[J]. 光学 精密工程, 2015, 23(1): 1-9. HAN CH Y. Performance optimization of electro-optical imaging systems[J]. Opt. Precision Eng., 2015, 23(1): 1-9. (in Chinese)

    韩昌元. 光电成像系统的性能优化[J]. 光学 精密工程, 2015, 23(1): 1-9. HAN CH Y. Performance optimization of electro-optical imaging systems[J]. Opt. Precision Eng., 2015, 23(1): 1-9. (in Chinese)

[2] 姚园, 许永森, 丁亚林, 等. 大视场三线阵航空测绘相机光学系统设计[J]. 光学 精密工程, 2018, 26(9): 2335-2344. YAO Y, XU Y S, DING Y L, et al.. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Opt. Precision Eng., 2018, 26(9): 2335-2344. (in Chinese)

    姚园, 许永森, 丁亚林, 等. 大视场三线阵航空测绘相机光学系统设计[J]. 光学 精密工程, 2018, 26(9): 2335-2344. YAO Y, XU Y S, DING Y L, et al.. Optical-system design for large field-of-view three-line array airborne mapping camera[J]. Opt. Precision Eng., 2018, 26(9): 2335-2344. (in Chinese)

[3] 张宗存, 丁学专, 杨波, 等. 超大幅宽低畸变成像系统设计与分析[J]. 红外与毫米波学报, 2017, 36(6): 732-738. ZHANG Z C, DING X ZH, YANG B, et al.. Design and analysis of super large width and low distortion imaging system[J]. Journal of Infrared and Millimeter Waves, 2017, 36 (6): 732-738. (in Chinese)

    张宗存, 丁学专, 杨波, 等. 超大幅宽低畸变成像系统设计与分析[J]. 红外与毫米波学报, 2017, 36(6): 732-738. ZHANG Z C, DING X ZH, YANG B, et al.. Design and analysis of super large width and low distortion imaging system[J]. Journal of Infrared and Millimeter Waves, 2017, 36 (6): 732-738. (in Chinese)

[4] FAN L R, LU L J. Design of a simple fisheye lens[J]. Applied Optics, 2019, 58(19): 5311-5319.

    FAN L R, LU L J. Design of a simple fisheye lens[J]. Applied Optics, 2019, 58(19): 5311-5319.

[5] JEONG K, KIM J, LEE L P. Biologically inspired artificial compound eyes[J]. Science, 2006, 312(5773): 557-561.

    JEONG K, KIM J, LEE L P. Biologically inspired artificial compound eyes[J]. Science, 2006, 312(5773): 557-561.

[6] LEE W B, JANG H, PARK S, et al.. COMPU-EYE: a high resolution computational compound eye[J]. Optics Express, 2016, 24(3): 2013-2026.

    LEE W B, JANG H, PARK S, et al.. COMPU-EYE: a high resolution computational compound eye[J]. Optics Express, 2016, 24(3): 2013-2026.

[7] ZHANG SH Q, ZHOU L Y, XUE CH X, et al.. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses[J]. Applied Optics, 2017, 56(26): 7442-7449.

    ZHANG SH Q, ZHOU L Y, XUE CH X, et al.. Design and simulation of a superposition compound eye system based on hybrid diffractive-refractive lenses[J]. Applied Optics, 2017, 56(26): 7442-7449.

[8] COSSAIRT O S, MIAU D, NAYAR S K. Scaling law for computational imaging using spherical optics[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 2011, 28(12): 2540-2553.

    COSSAIRT O S, MIAU D, NAYAR S K. Scaling law for computational imaging using spherical optics[J]. Journal of The Optical Society of America A-optics Image Science and Vision, 2011, 28(12): 2540-2553.

[9] BRADY D J, GEHM M E, STACK R A, et al.. Multiscale gigapixel photography[J]. Nature, 2012, 486(7403): 386-389.

    BRADY D J, GEHM M E, STACK R A, et al.. Multiscale gigapixel photography[J]. Nature, 2012, 486(7403): 386-389.

[10] LLULL P, BANGE L, PHILLIPS Z, et al.. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2015, 2(12): 1086-1089.

    LLULL P, BANGE L, PHILLIPS Z, et al.. Characterization of the AWARE 40 wide-field-of-view visible imager[J]. Optica, 2015, 2(12): 1086-1089.

[11] PANG W B, BRADY D J. Field of view in monocentric multiscale cameras[J]. Applied Optics, 2018, 57(24): 6999-7005.

    PANG W B, BRADY D J. Field of view in monocentric multiscale cameras[J]. Applied Optics, 2018, 57(24): 6999-7005.

[12] SHEN Y, WANG H, WANG C C, et al.. Optical design of a distributed zoom concentric multiscale meteorological instrument[J]. Applied Optics, 2018, 57(18): 5168-5179.

    SHEN Y, WANG H, WANG C C, et al.. Optical design of a distributed zoom concentric multiscale meteorological instrument[J]. Applied Optics, 2018, 57(18): 5168-5179.

[13] 邵洪禹, 李英超, 王超, 等. 超分辨望远光学系统像差影响及优化设计[J]. 中国光学, 2020, 13(1): 106-120. SHAO H Y, LI Y CH, WANG CH, et al.. Aberration effect and optimization design of super-resolution telescope optical system[J]. Chinese Optics, 2020, 13(1): 106-120. (in Chinese)

    邵洪禹, 李英超, 王超, 等. 超分辨望远光学系统像差影响及优化设计[J]. 中国光学, 2020, 13(1): 106-120. SHAO H Y, LI Y CH, WANG CH, et al.. Aberration effect and optimization design of super-resolution telescope optical system[J]. Chinese Optics, 2020, 13(1): 106-120. (in Chinese)

[14] 姜洋, 全向前, 杜杰, 等. 全海深大视场超高清光学系统设计[J]. 光学 精密工程, 2019, 27(11): 2289-2295. JIANG Y, QUAN X Q, DU J, et al.. Design of deep-sea optical imaging system with wide field of view and ultra-high resolution[J]. Opt. Precision Eng., 2019, 27(11): 2289- 2295. (in Chinese)

    姜洋, 全向前, 杜杰, 等. 全海深大视场超高清光学系统设计[J]. 光学 精密工程, 2019, 27(11): 2289-2295. JIANG Y, QUAN X Q, DU J, et al.. Design of deep-sea optical imaging system with wide field of view and ultra-high resolution[J]. Opt. Precision Eng., 2019, 27(11): 2289- 2295. (in Chinese)

[15] 陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学, 2020, 13(1): 179-188. CHEN SH N, JIANG H L, WANG CH Y, et al.. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 2020, 13(1): 179-188. (in Chinese)

    陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学, 2020, 13(1): 179-188. CHEN SH N, JIANG H L, WANG CH Y, et al.. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 2020, 13(1): 179-188. (in Chinese)

[16] 刘飞, 魏雅喆, 韩平丽, 等. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计[J]. 物理学报, 2019, 68(8): 99-108. LIU F, WEI Y ZH, HAN P L, et al.. Design of monocentric wide field-of-view and high-resolution computational imaging system[J]. Acta Physica Sinica, 2019, 68(8): 99-108. (in Chinese)

    刘飞, 魏雅喆, 韩平丽, 等. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计[J]. 物理学报, 2019, 68(8): 99-108. LIU F, WEI Y ZH, HAN P L, et al.. Design of monocentric wide field-of-view and high-resolution computational imaging system[J]. Acta Physica Sinica, 2019, 68(8): 99-108. (in Chinese)

[17] FOOTE P C, WOODSON R A. Lens design and tolerance analysis methods and results[J]. Journal of the Optical Society of America, 1948, 38(7): 590-599.

    FOOTE P C, WOODSON R A. Lens design and tolerance analysis methods and results[J]. Journal of the Optical Society of America, 1948, 38(7): 590-599.

刘飞, 刘佳维, 邵晓鹏. 高集成度小型化共心多尺度光学系统设计[J]. 光学 精密工程, 2020, 28(6): 1275. LIU Fei, LIU Jia-wei, SHAO Xiao-peng. Design of high integration and miniaturization concentric multiscale optical system[J]. Optics and Precision Engineering, 2020, 28(6): 1275.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!