中国激光, 2017, 44 (6): 0607001, 网络出版: 2017-06-08   

基于互相关运算的扫频光学相干层析成像延时校正算法 下载: 554次

A Delay Correction Algorithm for Swept Source Optical Coherence Tomography Based on Cross Correlation Operation
卢宇 1,2,*李中梁 1,2南楠 1步扬 1,2陈艳 1,2王瑄 1,2王向朝 1,2
作者单位
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
提出了一种扫频光学相干层析成像k-clock延时校正算法, 该算法基于互相关运算, 能够有效校正光源自带k-clock信号的延时。由于扫频光源的不稳定性、同步触发硬件的精度不足以及外界环境影响, 扫频光源自带的k-clock信号在重采样干涉信号时很可能与干涉信号之间有一个不确定的延时, 导致系统分辨率下降。通过实验获得一个标准k-clock信号, 然后利用互相关运算计算出需要校正的k-clock信号的延时。由计算出的延时, 将k-clock信号进行左右移动从而对其进行校正, 再利用三次样条插值获得波数域等间隔的干涉信号。实验结果表明, 该算法平均运行时间为0.18 s, 能够将系统分辨率提高18.2%, 改善系统性能。
Abstract
A new algorithm of k-clock delay correction for swept source optical coherence tomography is proposed. The algorithm is based on cross correlation operation and can effectively correct the delay of the swept source k-clock signal. Due to the instability of the swept source and the external environment, as well as lack of precision of the synchronous trigger hardware, the k-clock signal of the swept source may have an uncertain delay with the interference signal when resampling the interference signal, resulting in decreased system resolution. A standard k-clock signal is acquired by experiments, and then the delay of the k-clock signal is calculated using the cross correlation operation. According to the calculated delay, the k-clock signal is shifted left or right to correct the difference with the standard k-clock, and then the corrected k-clock signal is used to resample the interference signal at evenly wavenumber domain interval. The experimental results show that the system performance is improved. The average running time of the algorithm is 0.18 s, and the resolution of the system is improved by 18.2%.
参考文献

[1] Huang D, Swanson E A, Lin C P, et al. Optical coherence tomography[J]. Science, 1991, 254(5035): 1178.

[2] Tearney G J, Brezinski M E, Bouma B E, et al. In vivo endoscopic optical biopsy with optical coherence tomography[J]. Science, 1997, 276(5321): 2037-2039.

[3] McLaughlin R A, Scolaro L, Robbins P, et al. Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer[J]. Cancer Research, 2010, 70(7): 2579-2584.

[4] Chen W, You J, Gu X, et al. High-speed swept source optical coherence Doppler tomography for deep brain microvascular imaging[J]. Scientific Reports, 2016, 6: 38786.

[5] 曾 楠, 何永红, 马 辉, 等. 应用于珍珠检测的光学相干层析技术[J]. 中国激光, 2007, 34(8): 1140-1145.

    Zeng Nan, He Yonghong, Ma Hui, et al. Pearl detection with optical coherence tomography[J], Chinese J Lasers, 2007, 34(8): 1140-1145.

[6] Zhou Y, Liu T, Shi Y, et al. Automated internal classification of beadless Chinese ZhuJi Freshwater Pearls based on optical coherence tomography images[J]. Scientific Reports, 2016, 6: 33819.

[7] 秦玉伟. 基于光学相干层析成像技术的薄膜厚度测量[J]. 激光技术, 2012, 36(5): 662-664.

    Qin Yuwei. Film thickness measurement based on optical coherence tomography[J]. Laser Technology, 2012, 36(5): 662-664.

[8] Wiesauer K, Pircher M, Gtzinger E, et al. En-face scanning optical coherence tomography with ultra-high resolution for material investigation[J]. Optics Express, 2005, 13(3): 1015-1024.

[9] Chen Y, Zhao H, Wang Z, et al. Spectral-domain optical coherence tomography (SD-OCT) with a thermal light source[C]. 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment. International Society for Optics and Photonics, 2009, 7283: 72833J.

[10] Choma M A, Sarunic M V, Yang C, et al. Sensitivity advantage of swept source and Fourier domain optical coherence tomography[J]. Optics Express, 2003, 11(18): 2183-2189.

[11] Leitgeb R, Hitzenberger C K, Fercher A F. Performance of Fourier domain vs. time domain optical coherence tomography[J]. Optics Express, 2003, 11(8): 889-894.

[12] de Boer J F, Cense B, Park B H, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 2003, 28(21): 2067-2069.

[13] Drexler W, Morgner U, Krtner F X, et al. In vivo ultrahigh-resolution optical coherence tomography[J]. Optics Letters, 1999, 24(17): 1221-1223.

[14] Braaf B, Vermeer K A, Sicam V A D P, et al. Phase-stabilized optical frequency domain imaging at 1 μm for the measurement of blood flow in the human choroid[J]. Optics Express, 2011, 19(21): 20886-20903.

[15] 陈效杰, 白宝平, 陈晓冬, 等. 一种提高扫频光学相干层析成像分辨率的延时自动校正算法[J]. 中国激光, 2015, 42(12): 1204001.

    Chen Xiaojie, Bai Baoping, Chen Xiaodong, et al. An automatic delay correction algorithm for improving imaging resolution of swept source optical coherence tomography system[J]. Chinese J Lasers, 2015, 42(12): 1204001.

[16] Leitgeb R, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain optical coherence tomography[J]. Optics Express, 2004, 12(10): 2156-2165.

[17] 上官紫微, 沈 毅, 李 鹏, 等. 扫频光学相干层析成像系统的波数校正与相位测量研究[J]. 物理学报, 2016, 65(3): 034201.

    Shangguan Ziwei, Shen Yi, Li Peng, et al. Wavenumber calibration and phase measurement in swept source optical coherence tomography[J]. Acta Physica Sinica, 2016, 65(3): 034201.

[18] 刘 君, 朱善安, Bin He. 基于信号互相关函数与神经网络的全自动图像配准算法[J]. 航天医学与医学工程, 2006, 19(6): 425-429.

    Liu Jun, Zhu Shan′an, Bin He. An automatic image co-registration algorithm based on signal correlation function and artificial neural network[J]. Space Medicine & Medical Engineering, 2006, 19(6): 425-429.

[19] 王继东, 杜旭浩, 杨 帆. 基于三次样条插值信号重构的微网谐波及间谐波分析算法[J]. 电网技术, 2012, 36(11): 7-11.

    Wang Jidong, Du Xuhao, Yang Fan. A cubic spline interpolation signal reconstruction-based harmonic and inter-harmonic analysis algorithm for microgrid[J]. Power System Technology, 2012, 36(11): 7-11.

卢宇, 李中梁, 南楠, 步扬, 陈艳, 王瑄, 王向朝. 基于互相关运算的扫频光学相干层析成像延时校正算法[J]. 中国激光, 2017, 44(6): 0607001. Lu Yu, Li Zhongliang, Nan Nan, Bu Yang, Chen Yan, Wang Xuan, Wang Xiangzhao. A Delay Correction Algorithm for Swept Source Optical Coherence Tomography Based on Cross Correlation Operation[J]. Chinese Journal of Lasers, 2017, 44(6): 0607001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!