红外与激光工程, 2019, 48 (1): 0106002, 网络出版: 2019-04-02   

光子计数激光测深系统

Photon counting laser bathymetry system
作者单位
1 中国科学院上海技术物理研究所空间 主动光电技术重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
摘要
设计了一套基于光子计数探测体制的激光雷达水深探测系统, 该系统工作波长为532 nm, 单脉冲激光能量为0.5 μJ, 脉冲宽度为400 ps, 激光重频为10 kHz, 单光子探测器死时间为22 ns, 时间间隔分辨率为50 ps。首先介绍了光子计数探测体制激光雷达用于水深探测的基本原理及其相对于传统机载激光测深雷达的优越性; 然后分析了水底回波信号产生的平均光电子数与系统单脉冲激光能量的关系, 从而理论求取出该系统的极限测深能力为3.7 m左右。最后进行了外场实地试验, 对所获激光雷达点云数据进行滤波和解算, 成功测得了透明盘深度为1.2 m的浑浊水体深度为2 m以内的水下信息。
Abstract
A single wavelength(532 nm), short-pulse(400 ps), low pulse energy(0.5 μJ), high pulse repetition rate(10 kHz), short dead time of detector(22 ns) and high resolution of time interval(50 ps) photon counting laser bathymetry system was designed. The principle of photon counting laser bathymetry and its superiority to the typical airborne laser bathymetry was introduced. The relationship between the average number of photoelectrons generated at the receiver and the transmitted laser pulse energy was analyzed, indicating that the bathymetry capability of the system was about 3.7 m. Experiments were conducted in a pond with a Secchi depth of 1.2 meters, and the underwater information down to 2 m depths were successfully obtained by filtering and solving the point cloud data.
参考文献

[1] Stoker J M, Abdullah Q A, Nayegandhi A, et al. Evaluation of single photon and Geiger mode Lidar for the 3D Elevation Program[J]. Remote Sensing, 2016, 8(9): 767.

[2] Swatantran A, Tang H, Barrett T, et al. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar[J]. Scientific Reports, 2016, 6: 28277.

[3] Li Q, Degnan J, Barrett T, et al. First evaluation on single photon-sensitive lidar data[J]. Photogramm Eng Remote Sens, 2016, 82: 455-463.

[4] 翟国君, 吴太旗, 欧阳永忠,等. 机载激光测深技术研究进展[J]. 海洋测绘, 2012, 32(2):67-71.

[5] 姚春华, 陈卫标, 臧华国,等. 机载激光测深系统中的精确海表测量[J]. 红外与激光工程, 2003, 32(4): 351-355.

    Yao Chunhua, Chen Weibiao, Zang Huaguo, et al. Accurate measurement of sea surface in an airborne laser bathymetry[J]. Infrared and Laser Engineering, 2003, 32(4): 351-355. (in Chinese)

[6] Shrestha K Y, Carter W E, Slatton K C, et al. Shallow bathymetric mapping via multistop single photoelectron sensitivity laser ranging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4771-4790.

[7] Axelsson A. Rapid topographic and bathymetric reconnaissance using airborne LiDAR[C]//SPIE, 2010, 7835: 783503.

[8] 侯利冰, 黄庚华, 况耀武,等. 光子计数激光测距技术研究[J]. 科学技术与工程, 2013, 13(18): 5186-5190.

[9] Cossio T, Slatton K C, Carter W, et al. Predicting topographic and bathymetric measurement performance for low-SNR airborne lidar[J]. IEEE Transactions on Geoscience & Remote Sensing, 2009, 47(7): 2298-2315.

[10] Harding D, Dabney P, Valett S, et al. Airborne polarimetric, two-color laser altimeter measurements of lake ice cover: A pathfinder for NASA′s ICESat-2 spaceflight mission[C]//Geoscience and Remote Sensing Symposium. IEEE, 2011:3598-3601.

[11] 侯利冰. 运动平台条件下光子计数激光成像雷达关键技术研究[D]. 北京: 中国科学院大学, 2013.

    Hou Libing. Research on key technologies of photon counting imaging lidar in moving conditions[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese)

[12] Degnan J J. Scanning, multibeam, single photon lidars for rapid, large scale, high resolution, topographic and bathymetric mapping[J]. Remote Sensing, 2016, 8(11): 958.

张河辉, 丁宇星, 黄庚华. 光子计数激光测深系统[J]. 红外与激光工程, 2019, 48(1): 0106002. Zhang Hehui, Ding Yuxing, Huang Genghua. Photon counting laser bathymetry system[J]. Infrared and Laser Engineering, 2019, 48(1): 0106002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!