激光与光电子学进展, 2018, 55 (8): 081405, 网络出版: 2018-08-13   

激光增材制造薄壁结构件工艺及性能的研究 下载: 690次

Study on Process and Properties of Thin-Walled Structure Part by Laser Additive Manufacturing
作者单位
1 华中科技大学材料科学与工程学院, 湖北 武汉 430074
2 湖北工业大学工程技术学院, 湖北 武汉 430064
摘要
利用激光增材制造技术成形了薄壁结构件,采用粉末负离焦的方法解决了薄壁结构件成形过程中两端塌陷的问题,并分析了薄壁结构件的显微组织和力学性能。结果表明,当激光功率为1400 W,扫描速率为0.6 m·min-1,送粉速率为9.5 g·min-1时,获得了理想的单道熔覆层形貌。当单层提升量为0.57 mm时,薄壁结构件的表面无粘粉,无氧化色。熔覆层的高度和粉末利用率随粉末正负离焦量的增大而减小。薄壁结构件的显微组织主要为外延生长的树枝晶,离基体较近部位的枝晶较为粗大,而顶部为等轴晶组织。薄壁结构件的硬度高于基体的,且离基体较近部位的硬度较小。
Abstract
Based on the laser additive manufacturing technology, the thin-walled structural parts are formed. The method of negative defocusing of powder is adopted to solve the both-end collapse problem in the forming process of thin-walled structural parts. The microstructure and mechanical properties of thin-walled structural parts are analyzed. The results show that the ideal morphology of single track cladding layer is obtained at laser power of 1400 W, scanning speed of 0.6 m·min-1 and feeding speed of 9.5 g·min-1. The surface of the thin-walled structural part is free of powder and has no oxidation color when the lifting capacity of single layer is 0.57 mm. The height of cladding layer and the using efficiency of powder decrease with the increase of positive and negative powder defocusing. The microstructure of the thin-walled structural part is mainly dendrites growing epitaxially and the dendrites near the substrate are relatively coarse, however at the top is equiaxed grain structure. The hardness of the thin-walled structural part is higher than that of the substrate, and the hardness near the substrate is relatively smaller.
参考文献

[1] 宋成法. 激光熔覆成形薄壁零件的工艺研究及数值分析[D]. 苏州: 苏州大学, 2013: 1-10.

    Song C F. The process research and numerical analysis of the thin-walled parts in laser cladding[D].Suzhou: Soochow University, 2013: 1-10.

[2] 孙后顺. 基于激光光内同轴送粉的非圆滑过渡薄壁件快速成形研究[D]. 苏州: 苏州大学, 2012: 1-9.

    Sun H S. Research on the rapid manufacturing of thin-walled part with unsmooth transition by coaxial inside-beam powder feeding[D]. Suzhou: Soochow University, 2012: 1-9.

[3] Frazier W E. Metal additive manufacturing: A review[J]. Journal of Materials Engineering & Performance, 2014, 23(6): 1917-1928.

[4] Ford S, Despeisse M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges[J]. Journal of Cleaner Production, 2016,137: 1573-1587.

[5] 吴晓瑜, 林鑫, 吕晓卫, 等. 激光立体成形17-4 PH 不锈钢组织性能研究[J]. 中国激光, 2011, 38(2): 0203005.

    Wu X Y, Lin X, Lü X W, et al. Study on microstructure and mechanical properties of laser solid forming 17-4 PH stainless steel[J]. Chinese Journal of Lasers, 2011, 38(2): 0203005.

[6] 方琴琴, 傅戈雁, 王聪, 等. 带连接筋双层薄壁件激光直接成形工艺[J]. 中国激光, 2017, 44(2): 0202005.

    Fang Q Q, Fu G Y, Wang C, et al. Laser direct forming technology of double thin-walled parts with connecting ribs[J]. Chinese Journal of Lasers, 2017, 44(2): 0202005.

[7] 王续跃, 王彦飞, 江豪, 等. 圆形倾斜薄壁件的激光熔覆成形[J]. 中国激光, 2014, 41(1): 0103006.

    Wang X Y, Wang Y F, Jiang H, et al. Laser cladding forming of round thin-walled parts with slope angle[J]. Chinese Journal of Lasers, 2014, 41(1): 0103006.

[8] 邓志强, 石世宏, 周斌, 等. 不等高弯曲弧形薄壁结构激光熔覆成形[J]. 中国激光, 2017, 44(9): 0902005.

    Deng Z Q, Shi S H, Zhou B, et al. Laser cladding forming of unequal-height curved arc-shaped thin-wall structures[J]. Chinese Journal of Lasers, 2017, 44(9): 0902005.

[9] Tan H, Chen J, Zhang F Y, et al. Process analysis for laser solid forming of thin-wall structure[J]. International Journal of Machine Tools & Manufacture, 2010, 50(1): 1-8.

[10] 朱刚贤, 张安峰, 李涤尘, 等. 激光金属制造薄壁零件Z轴单层行程模型[J]. 焊接学报, 2010, 31(8): 57-60.

    Zhu G X, Zhang A F, Li D C, et al. Model of layer thickness of thin-walled parts in laser metal direct manufacturing[J]. Transactions of the China Welding Institution, 2010, 31(8): 57-60.

[11] Zhang K, Wang S J, Liu W J, et al. Characterization of stainless steel parts by laser metal deposition shaping[J]. Materials & Design, 2014, 55(6): 104-119.

[12] Zhang K, Liu W J, Shang X F. Research on the processing experiments of laser metal deposition shaping[J]. Optics and Laser Technology, 2007,39(3): 549-557.

[13] Gumann M, Bezenon C, Canalis P, et al. Single-crystal laser deposition of superalloys: Processing-microstructure maps[J]. Acta Materialia, 2001, 49(6): 1051-1062.

[14] 张晓东, 朱晓亮. 激光直接制造薄壁圆筒零件的特性[J]. 激光与光电子学进展, 2014, 51(7): 071601.

    Zhang X D, Zhu X L. Characterization on laser direct manufacturing metal thin wall cylinder[J]. Laser & Optoelectronics Progress, 2014,51(7): 071601.

[15] Guan K, Wang Z M, Gao M, et al. Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel[J]. Materials & Design, 2013, 50: 581-586.

[16] 余金水, 邱长军, 周炬, 等. 激光快速成形304不锈钢试件组织与拉伸断口特性分析[J]. 激光与光电子学进展, 2012, 49(1): 011402.

    Yu J S, Qiu C J, Zhou J, et al. Analysis on microstructure and tensile fracture characteristic of 304 stainless steel specimens made by laser rapid forming[J]. Laser & Optoelectronics Progress, 2012, 49(1): 011402.

[17] 郭鹏. 激光增材制造不锈钢的力学性能和铣削性能研究[D]. 济南: 山东大学, 2017: 40-49.

    Guo P. Study on mechanical properties and milling performance of stainless steel by laser additive manufacturing technique[D]. Jinan: Shandong University, 2017: 40-49.

肖鱼, 路媛媛, 郭溪溪, 王涛, 杜锦铮, 刘德健. 激光增材制造薄壁结构件工艺及性能的研究[J]. 激光与光电子学进展, 2018, 55(8): 081405. Xiao Yu, Lu Yuanyuan, Guo Xixi, Wang Tao, Du Jinzheng, Liu Dejian. Study on Process and Properties of Thin-Walled Structure Part by Laser Additive Manufacturing[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081405.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!