红外与激光工程, 2018, 47 (6): 0603001, 网络出版: 2018-09-08   

面向层结构的角谱传播计算全息算法(特邀)

Computer-generated holographic algorithm based on layer structure using angular spectrum propagation theory(Invited)
作者单位
1 清华大学 精密仪器系 精密测试技术及仪器国家重点实验室, 北京 100084
2 中国电子信息产业发展研究院, 北京 100846
摘要
为了提高计算全息图的生成速度和再现像的重建质量, 文中基于角谱传播的精确衍射计算过程, 提出了一种面向层结构的角谱传播计算全息算法。该算法将三维场景分层, 并将每层场景通过角谱衍射运算得到子全息图。通过子全息图在干涉面的叠加, 最终生成整个三维场景的全息图。由于角谱运算没有旁轴近似, 因此对于不同类型的三维数据, 利用该算法计算得到的全息图均可重建得到精确的再现像。此外, 该算法的计算复杂度不取决于三维场景的复杂度, 只取决于分层层数, 因此运算速度较传统点元法可提高两三个数量级。该算法为三维场景的动态显示提供了一种有效的解决方案。
Abstract
A computer-generated holographic(CGH) algorithm based on layer structure using angular spectrum propagation theory was proposed in order to improve the calculation speed and the reconstruction quality. The 3D scene was stratified, and the sub holograms of each layer were obtained by angular spectrum diffraction method. The hologram of the whole 3D scene was generated by the superposition of these sub holograms. Because there was no paraxial approximation in angular spectrum diffraction method, the algorithm could be applied to different kinds of 3D models. Besides, the computational complexity of the algorithm depended on the number of layers rather than the complexity of 3D scenes, so the computation speed could be increased by 2-3 orders of magnitude. The algorithm provides an effective solution for dynamic 3D display.
参考文献

[1] 郁道银, 谈恒英. 工程光学[M]. 第4版. 北京: 机械工业出版社, 2016.

    Yu Daoyin, Tan Hengying. Engineering Optics [M]. 4th ed. Beijing: China Machine Press, 2016. (in Chinese)

[2] 韩超, 韦穗, 权希龙, 等. 数字微镜器件的全息显示[J]. 中国激光, 2010, 37(1): 190-194.

    Han Chao, Wei Sui, Quan Xilong, et al. Holographic display of digital micromirror device [J]. Chinese Journal of Lasers, 2010, 37(1): 190-194. (in Chinese)

[3] Chen R, Wilkinson T D. Computer generated hologram from point cloud using graphics processor [J]. Applied Optics, 2009, 48(36): 6841-6850.

[4] Sando Y, Itoh M, Yatagai T. Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects [J]. Optics Letters, 2003, 28(24): 2518-2520.

[5] Lucente M. Interactive computation of holograms using a lookup table [J]. Journal of Electronic Imaging, 1995, 2(1): 28-34.

[6] Kim S C, Kim J M, Kim E S. Effective memory reduction of the novel lookup table with one-dimensional sub-principle fringe patterns in computer-generated holograms [J]. Optics Express, 2012, 20(11): 12021-12034.

[7] Nishitsuji T, Shimobaba T, Kakue T, et al. Fast calculation of computer-generated hologram using run-length encoding based recurrence relation [J]. Optics Express, 2015, 23(8): 9852-9857.

[8] Shimobaba T, Masuda N, Ito T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane[J]. Optics Letters, 2009, 34(20): 3133-3135.

[9] Trester S. Computer-simulated Fresnel holography [J]. European Journal of Physics, 2000, 21(4): 317-331.

[10] Chen J S, Chu D, Smithwick Q Y. Rapid hologram generation utilizing layer-based approach and graphic rendering for realistic three-dimensional image reconstruction by angular tiling [J]. Journal of Electronic Imaging, 2014, 23(2): 76-85.

[11] Su P, Cao W, Ma J, et al. Fast computer-generated hologram generation method for three-dimensional point cloud model [J]. Journal of Display Technology, 2016, 12(12): 1688-1694.

[12] 赵燕. 三维场景的计算全息显示技术[D]. 北京: 清华大学,2016.

    Zhao Yan. Computer-generated hologram technologies for three-dimensional display[D]. Beijing: Tsinghua University, 2016. (in Chinese)

[13] Bayraktar M, 魻zcan M. Method to calculate the far field of three-dimensional objects for computer-generated holography [J]. Applied Optics, 2010, 49(24): 4647-4654.

[14] Muffoletto R P, Tyler J M, Tohline J E. Shifted Fresnel diffraction for computational holography [J]. Optics Express, 2007, 15(9): 5631-5640.

[15] Okada N, Shimobaba T, Ichihashi Y, et al. Fast calculation of a computer-generated hologram for RGB and depth images using a wavefront recording plane method[J]. Photonics Letters of Poland, 2014, 6(3): 90-92.

[16] Zhang F, Yamaguchi I, Yaroslavsky L P. Algorithm for reconstruction of digital holograms with adjustable magnification[J]. Optics Letters, 2004, 29(14): 1668-1670.

[17] Goodman J W. Introduction to Fourier Optics [M]. 4th ed. San Francisco: W. H. Freeman & Company, 2017.

曹良才, 何泽浩, 赵燕, 金国藩. 面向层结构的角谱传播计算全息算法(特邀)[J]. 红外与激光工程, 2018, 47(6): 0603001. Cao Liangcai, He Zehao, Zhao Yan, Jin Guofan. Computer-generated holographic algorithm based on layer structure using angular spectrum propagation theory(Invited)[J]. Infrared and Laser Engineering, 2018, 47(6): 0603001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!