光学 精密工程, 2019, 27 (5): 1013, 网络出版: 2019-09-02   

激光聚变靶丸内表面轮廓测量系统的研制

Development of inner-surface profile measurement system for ICF capsule
作者单位
北京理工大学 光电学院 精密光电测试仪器及技术北京市重点实验室, 北京 100081
摘要
针对激光聚变靶丸内表面轮廓高精度无损测量的迫切需求, 研制了一套激光聚变靶丸内表面轮廓测量系统。该系统通过最小二乘算法(LSC)计算出靶丸回转偏心量, 并利用偏心调整台对靶丸偏心进行自动快速调整; 然后, 系统软件控制气浮回转轴承驱动靶丸旋转, 利用激光差动共焦传感器(LDCS)轴向响应曲线过零点及光线追迹算法精确计算出靶丸内表面轮廓上每个采样点的几何位置; 最后, 对靶丸内轮廓测量数据进行LSC评定得到其圆度信息。实验证明, 靶丸回转偏心的自动调整时间可达22 s, 当采样点分别为1 024, 2 048及4 096时, 靶丸内轮廓测量时间分别可达10, 20及40 s, 且圆度测量标准差可达19 nm(1 024点)。该系统实现了靶丸回转偏心的自动快速调整及其内轮廓的高精度、无损、快速、自动测量。
Abstract
Considering the urgent demand for high-precision and nondestructive measurements of a Inertial Confinement Fusion (ICF) capsule, an inner-surface profile measurement system for an ICF capsule was developed in this study. First, the system used a Least Square Circle (LSC) algorithm to calculate the capsule′s eccentricity and adjusts it automatically and quickly using the eccentricity adjustment table. The system then controlled via software an air-bearing shaft to drive the capsule rotation, and it used the zero-crossing point of the axial response curve of a laser differential confocal sensor and a ray tracing algorithm to calculate the geometric position of each sampling point on the capsule′s inner-surface profile. Finally, the roundness value of the inner profile was evaluated using LSC. Experimental results show that the eccentricity adjustment time can reach 22 s, and the inner profile measurement time can reach 10, 20, and 40 s, which correspond to the sampling points of 1 024, 2 048, and 4 096, respectively. In addition, the standard deviation of the inner profile roundness is shown to be as high as 19 nm (1 024 points). The system realizes an automatic rapid adjustment of the capsule′s eccentricity and a high-precision, nondestructive, rapid, and automatic measurement of the capsule′s inner profile.
参考文献

[1] BRUMFIEL G. Laser lab shifts focus to warheads [J]. Nature, 2012, 491(7423): 170.

[2] BETTI R, GONCHAROV V N, MCCRORY R L, et al.. Growth rates of the ablative rayleigh-taylor instability in inertial confinement fusion [J]. Physics of Plasmas, 1998, 5(5):1446-1454.

[3] NIKITENKO A I, TOLOKONNIKOV S M. Optimal ′tomography′of 2-layered targets: 3D parameters reconstruction from shadow images [J]. Fusion Science and Technology, 2007, 51(4): 705-716.

[4] DU K, LIU M F, WANG T, et al.. Recent progress in ICF target fabrication at RCLF[J]. Matter and Radiation at Extremes, 2018, S2468080X17300262.

[5] KATO H, YAMADA H, OHMAGARI S, et al.. Synthesis and characterization of diamond capsules for direct-drive inertial confinement fusion [J]. Diamond and Related Materials, 2018, 86:15-19.

[6] 谢兴龙. 激光惯性约束核聚变历程回眸 [J]. 安徽师范大学学报(自然科学版), 2018(2):103-109.

    XIE X L. The memorable review of laser inertial confinement fusion process [J]. Journal of Anhui Normal University (Natural Science), 2018(2):103-109. (in Chinese)

[7] SCHULTZ K. FY99 ICF Annual Report (General Atomics Report GA-A23240) [R]. San Diego, General Atomics & Affiliated Companies, 1999.

[8] SINGLETON R M, WEINSTEIN B W, HENDRICKS C D. X-ray measurement of laser fusion targets using least squares fitting [J]. Applied Optics, 1979, 18(24):4116-4123.

[9] WANG K, LEI H L, LI J, et al.. Characterization of inertial confinement fusion targets using X-ray phase contrast imaging [J]. Optics Communications, 2014, 332(4):9-13.

[10] MENG J, ZHAO X S, TANG X, et al.. Surface characterization of ICF capsule by AFM-based profilometer [J]. High Power Laser Science & Engineering, 2017, 5(3):55-61.

[11] STEPHENS R B, MROCZKOWSKI T, GIBSON J. Seeing shell wall fluctuations [J]. Fusion Science & Technology, 2000, 38(1):132-135.

[12] WANG L X, QIU L R, ZHAO W Q, et al.. Laser differential confocal inner-surface profile measurement method for an ICF capsule [J]. Optics Express, 2017, 25(23):28510.

[13] 刘志群, 易定容, 孔令华, 等. 基于并行共聚焦显微系统的物方差动轴向测量 [J]. 光学 精密工程, 2017,25(6):1449-1457.

    LIU ZH Q, YI D R, KONG L H, et al.. Object-side based differential axial measurement based on parallel confocal microscopy [J]. Opt. Precision Eng., 2017, 25(6): 1449-1457. (in Chinese)

[14] ZHAO W Q, GUO J J, QIU L R, et al.. Low transmittance ICF capsule geometric parameters measurement using laser differential confocal technique [J]. Optics Communications, 2013, 292: 62-67.

[15] 王东霞, 温秀兰, 乔贵方. 工件圆度误差测量不确定度评定 [J]. 光学 精密工程, 2018, 26(10):2438-2445.

    WANG D X, WEN X L, QIAO G F. Estimation of uncertainty in measuring the workpiece circularity error [J]. Opt. Precision Eng., 2018, 26(10): 2438-2445. (in Chinese)

[16] LI S B, WANG Y, WANG Q, et al.. Rapid measurement and compensation method of eccentricity in automatic profile measurement of the ICF capsule[J]. Applied Optics, 2018, 57(14):3761-3769.

[17] SCHMITZ T L, DAVIES A D, EVANS C J. Uncertainties in interferometric measurements of radius of curvature [J]. SPIE, 2001, 4451:432-447.

赵维谦, 王龙肖, 邱丽荣, 王允, 马仙仙. 激光聚变靶丸内表面轮廓测量系统的研制[J]. 光学 精密工程, 2019, 27(5): 1013. ZHAO Wei-qian, WANG Long-xiao, QIU Li-rong, WANG Yun, MA Xian-xian. Development of inner-surface profile measurement system for ICF capsule[J]. Optics and Precision Engineering, 2019, 27(5): 1013.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!