光学学报, 2025, 45 (8): 0826001, 网络出版: 2025-04-27  

基于磁性电磁超原子的双频非互易完美吸收【增强内容出版】

Dual-Band Nonreciprocal Perfect Absorption Based on Magnetic Electromagnetic Meta-Atoms
作者单位
1 浙江师范大学浙江省光信息检测与显示技术研究重点实验室,物理与电子信息工程学院,浙江 金华 321004
Key Laboratory of Optical Information Detecting and Display Technology of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
2 南方科技大学物理系,广东 深圳 518055
Department of Physics, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
摘要
采用两种具有本征磁性的铁氧体材料设计了具有双层柱状结构的亚波长磁性电磁超原子(EMA),并以其为基本单元构建了具有正方晶格结构的磁性电磁超材料,在两个工作频率下分别实现了具有非互易特性的电磁波完美吸收。基于推广的Mie散射理论和多重散射理论,优化了磁性EMA的结构并进行了透射谱和反射谱计算,结果表明,在特定角度下右侧入射高斯光束的吸收率达到了97%,而在关于法线对称的左侧入射高斯光束的反射率超过80%,可将这一现象称为非互易完美吸收。它源于磁性EMA在外加偏置磁场下的时间反演对称性破缺,以及周期性晶格所导致的非互易晶格Kerker效应。此外,通过外加偏置磁场反向可以实现非互易性反转,通过改变外加偏置磁场的强度还可以实现工作频率的灵活调制,从而为非互易性调制提供了新的自由度。本研究工作可以加深对非互易光学的理解,并且在微波光子学方面具有潜在的应用价值。
Abstract
Objective

The advent of electromagnetic meta-atoms (EMAs) significantly alters the interaction between electromagnetic waves and subwavelength particles, enabling the emergence of novel phenomena associated with scattering and absorption, leading to promising applications. The physics behind these properties is rooted in the unique configurations of EMAs, which enable selective excitation of multipolar modes with custom-made amplitudes, resulting in phenomena such as superscattering, invisibility, Fano resonance, and Kerker effect. Ferrite materials possess intrinsic magnetic responses that allow the design of magnetic EMAs with nonreciprocal features, arising from time-reversal symmetry breaking in ferrites under a bias magnetic field (BMF). By periodically arranging an array of EMAs, magnetic metamaterials (MMs) can be constructed to manipulate electromagnetic waves nonreciprocally, particularly near the magnetic surface plasmon (MSP) resonance. By designing magnetic EMAs with two types of yttrium iron garnet (YIG) ferrite materials with different saturation magnetizations, two MSP resonances can be achieved. As a result, MMs constructed from these magnetic EMAs exhibit a nonreciprocal perfect absorption effect at two different frequencies for incident Gaussian beams with transverse magnetic (TM) polarization. Specifically, in one direction, the structure acts as a perfect absorber, while in the mirror-symmetric direction, the beam is mainly reflected. This nonreciprocal phenomenon is closely related to the lattice Kerker effect and nonreciprocal Fano resonance. The magnetic EMAs serve as fundamental elements for nonreciprocal optics and microwave photonics.

Methods

The scattering properties of magnetic EMAs can be solved using the generalized Mie theory, which relates the scattering field to the incident field via Mie coefficients. The scattering cross sections of the magnetic EMAs are calculated based on these coefficients, and nonreciprocal Fano resonances are visualized by examining the scattering cross sections. By incorporating multiple scattering theory, the scattering field generated by multiple magnetic EMAs is rigorously calculated, enabling a deeper analysis of nonreciprocal scattering behavior. In addition, photonic band diagrams, absorbance, and reflectance are calculated to optimize the configurations of magnetic EMAs and the direction of the incident Gaussian beam, ensuring perfect absorption at a specified direction while achieving substantial reflection in the mirror-symmetric direction. Effective-medium theory is also employed to retrieve the effective constitutive parameters of MMs, identifying the MSP resonance frequencies, which are compared with photonic band diagrams.

Results and Discussions

By periodically arranging an array of magnetic EMAs in a square lattice, with a lattice constant a=9 mm, we construct MMs that serve as nonreciprocal perfect absorbers. The saturation magnetizations of the two ferrite materials in the magnetic EMAs are Ms1=0.300 T and Ms2=0.175 T, with an inner radius rc=0.9 mm, an outer radius rs=2.3 mm, and damping factors set as a1=a2=2×10-2. The BMF is set to H0=600 Oe. By plotting transmittance and reflectance as functions of frequency f and incident angle θinc, we identify two operating frequencies f1=3.90 GHz and f2=5.56 GHz, with corresponding incident angles θinc=±70° (Fig. 2). Next, keeping other parameters constant, we plot the transmittance and reflectance as functions of a1 and a2 and optimize the damping factor to a1=a2=1.2×10-2 (Fig. 3). Further optimization of the inner and outer radii yields rc=0.8 mm and rs=2.25 mm, achieving an absorbance greater than 97% and a reflectance exceeding 80% in the mirror-symmetric direction (Fig. 3). Using multiple scattering theory, full-wave simulations reveal nonreciprocal perfect absorption (NPA) at two different frequencies. The lower-frequency NPA corresponds to the resonant mode in the outer layer, while the higher-frequency NPA corresponds to the resonant mode in the core. By plotting the angular scattering amplitude of the unit cell at the central position, the nonreciprocal lattice Kerker effect is observed. Specifically, perfect absorption for the rightward incident beam corresponds to backward scattering, while strong reflection occurs for the leftward incident beam due to forward scattering (Fig. 4). By comparing the photonic band diagrams with effective-medium theory, MSP resonances at two different frequencies are confirmed, with the operating frequencies falling within the vicinity of the MSP resonances. In addition, the operating frequencies can be flexibly tuned upwards or downwards by adjusting the BMF, as evidenced by the frequency shift of the MSP resonances (Fig. 5). To further investigate the scattering properties of magnetic EMAs and their connection to NPA, the scattering cross section and the amplitude of Mie coefficients are calculated as functions of frequency. Two asymmetric Fano dips are identified near the operating frequencies, resulting from the interference between the broadband 0th-order mode and the narrowband -1st-order mode. Moreover, the tunability of both the Fano resonances and operating frequencies via the BMF introduces an extra degree of freedom (Figs. 6 and 7).

Conclusions

Magnetic EMAs composed of two types of ferrite materials with different saturation magnetizations have been designed, serving as building blocks for MMs to achieve dual-band NPA. At a specified incident angle, the Gaussian beam is absorbed with an absorbance exceeding 97%, while in the mirror-symmetric direction, it is strongly reflected with a reflectance over 80%. The NPA effect arises from the time-reversal symmetry breaking nature of MSP resonance and the nonreciprocal lattice Kerker effect. The phenomenon is also closely related to the nonreciprocal Fano resonances of isolated magnetic EMAs, originating from the interaction between the broadband bright mode and the narrowband dark mode associated with angular momentum channels m=0 and m=-1. In addition, both the operating frequencies and Fano resonances can be flexibly controlled by the BMF, enhancing potential applications in nonreciprocal optics and microwave photonics.

1 引 言

光与物质的相互作用是光学研究领域中最基本的研究课题之一,对于各种奇异光学现象的实现和新颖光学性质的探索都具有重要作用,随着理论研究的深化和实验技术的不断提高,相关的研究也取得了迅速发展。通过多种不同的方式可以增强光与物质的相互作用,比如基于光子晶体的慢光体系1,基于金属或者石墨烯的等离激元共振体系2-3,具有亚波长特征的纳米微腔或者纳米天线体系等4-5。通过这些体系或者可以实现光场的强局域性,或者可以实现局域光场的显著增强,从而极大地增强光与物质的相互作用,因此在亚波长尺度上进行光学结构设计就显得尤为重要。这种具有特定结构的人造亚波长电磁结构也称为电磁超原子(EMA),它可以从根本上调制光与物质的相互作用。EMA具有这种特性的根源在于通过巧妙设计EMA,其散射场多级模式的强度和相位都得到优化,从而达到不同的预期效果。超散射现象是一种典型的同相位多级模式的相干叠加6;隐身现象则恰恰相反,它对应于多级模式的相干相消7;Kerker效应对应于特定方向上多极模式相干增强,而在其相反方向上多极模式相干相消8;Fano共振现象源于窄频带高阶模式和宽频带低阶模式的相干结果9。这些现象从物理层面上丰富了光学的研究内容,同时也实现了多种新颖的电磁特性和极具潜力的可能应用。

把EMA周期性或非周期性排列起来可以构建电磁超材料和电磁超表面,这引起了国内外科研团队的广泛关注,与之相关的现象和典型应用也得到了深入研究10-11。一个典型的应用就是实现完美吸收体(即人造黑体),其相比于黑体具有更多的奇异性质和独特功能。这一现象是由Padilla团队12-13于2008年通过构建电磁超材料在微波段和太赫兹频段首先实现的,之后大量具备不同特征的完美吸收体被陆续设计出来。从工作频率来看,完美吸收体有单频带12-13、双频带14、多频带15,以及宽频带16和窄频带12-13等工作模式;从入射光角度来看,有单方向12-13、双方向17、窄角度18、宽角度19,以及全角度20等实现方式;从入射光的偏振特征来看,可以简单分为偏振相关21和偏振无关22两种类型。针对完美吸收体的研究在不同的光学体系中得到了深入探讨,比如:在非厄米光学体系中,通过调制空间时间(PT)对称性实现完美吸收23;作为激光的时间反演逆过程,通过反激光的方式也可以实现相干完美吸收24;在高品质因子结构单元所构成的电磁超表面中,通过激发连续域束缚态(BIC)可以实现窄频带完美吸收25;采用零折射材料尤其是近零介电常数(ENZ)材料来增强光与物质的相互作用,也可以实现完美吸收26;采用具有梯度折射率的电磁“黑洞”体系27-28,可以实现类似于天体力学的全角度电磁波完美吸收29-30。对于完美吸收体的研究已经与越来越多的物理机制联系,因此能够实现更多的电磁现象,其电磁特性也越来越丰富。

本文采用具有本征磁性的铁磁材料来设计磁性EMA,由于在外加偏置磁场下磁性材料的时间反演对称性破缺,因此磁性超原子必然带来非互易电磁特性31。采用磁性EMA已经实现非互易Fano共振32和非互易Kerker效应33-34,因此采用磁性EMA所构建的磁性电磁超材料也具有与之相关的非互易特性。Liu等35实现了在单频带工作的非互易完美吸收体,那么可否实现具有双频带的非互易吸收体?为此,本文采用具有不同饱和磁化强度的两种铁磁材料来构建磁性EMA,以其构建磁性的电磁超构材料在两个频率下实现磁表面等离激元(MSP)共振。MSP共振可以增强非互易电磁特性36,因此通过优化磁性EMA有望在两个MSP共振频率附近实现非互易完美吸收。本研究结果表明,非互易完美吸收与磁性电磁超材料内的超原子间相互作用导致的晶格非互易Kerker效应紧密相关。而且,在两个工作频率附近,磁性EMA的0阶宽频带共振模式与-1阶窄频带共振模式的相互作用还导致了两个非互易的Fano共振,这也是非互易效应得到增强的原因。本文的研究工作可以进一步加深对非互易散射和非互易吸收的理解,对于非互易光学的研究和相关应用具有重要价值。

2 结构设计与理论方法

为了实现双频段的非互易完美吸收,采用两种具有不同饱和磁化强度的铁磁材料构建双层柱状磁性EMA,其几何结构和相关参数如图1所示。磁性EMA将空间区分为3个不同区域,其内外层的铁磁材料分别对应于区域Ⅰ和Ⅱ,相对应的半径分别为rcrs。两种铁磁材料的相对介电常数相同,即ε1=ε2=15+3×10-3i,是钇铁石榴石(YIG)铁氧体材料的典型参数37。最外面的区域Ⅲ是背景介质,本文设定为空气,对应的相对介电常数和相对磁导率为ε3=μ3=1。铁磁材料的磁性取决于其晶体结构和构成元素的组分浓度38,本文中两种YIG铁氧体材料所对应的饱和磁化强度是不同的,分别为Ms1Ms2。在饱和磁化的情况下,铁氧体的相对磁导率为二阶张量39,即

μ^=μr-iμκ0iμκμr0001μr=1+ωm(ω0-iαω)(ω0-iαω)2-ω2μκ=-ωmω(ω0-iαω)2-ω2

式中:ω0=2πγH0为共振频率,由外加偏置磁场H0决定;ωm=2πγMs为特征频率,取决于材料的饱和磁化强度Msγ为旋磁比,其值为2.8 MHz/Oe(1 Oe=79.578 A/m);ω为入射电磁波的圆频率;α表示与材料损耗密切相关的阻尼因子,它决定了铁磁材料吸收损耗的大小。在确定的外加偏置磁场H0下,铁磁材料会激发MSP共振,其对应的频率35

fm=12πω0+12ωm=γH0+12γMs

很显然,当铁磁材料的饱和磁化强度不同时,其对应的特征频率ωm也不同。因此,可以预期本文所构建的磁性EMA会在两个频率下产生MSP共振,其非互易性也会在这两个频率附近得到增强。由于铁磁材料只对TM模式的入射电磁波产生磁性响应,因此在本文的模拟和讨论中都是以TM极化的高斯光束作为入射电磁波。把磁性EMA周期性排列就可以构建磁性电磁超材料,本文将以正方晶格为例进行非互易完美吸收的探讨。

图 1. 双层磁性EMA的示意图。内核铁磁材料的相对介电常数为ε1,相对磁导率为μ^1,饱和磁化强度为Ms1,半径为rc;外层铁磁材料的相对介电常数为ε2,相对磁导率为μ^2,饱和磁化强度为Ms2,半径为rs。背景介质的相对介电常数和相对磁导率分别为ε3μ3,外加偏置磁场H0沿着z方向,入射电磁波具有横磁(TM)极化,其电场极化也沿着z方向

Fig. 1. Schematic diagram of subwavelength magnetic electromagnetic meta-atom (EMA) made of two kinds of ferrite materials with the inner radius rc and the outer radius rs. The inner ferrite material has the relative permittivity ε1, the relative permeability μ^1, and the saturation magnetization Ms1; the outer ferrite material has the relative permittivity ε2, the relative permeability μ^2, and the saturation magnetization Ms2. The bias magnetic field (BMF) H0 is exerted along z direction and the incident electromagnetic field possesses the transverse magnetic (TM) polarization with the electric field along z direction

下载图片 查看所有图片

在构建磁性EMA后,需要深入分析它的电磁性质,采用推广的Mie散射理论可以严格求解磁性EMA散射问题。近期关于磁性EMA的非互易Fano共振的研究已经对这一问题进行了完整的理论推导32,本文直接给出Mie散射系数的结果:

Sm=Ξm2k2rsJm'k3rs-ε2k3ε3k2Ξ˜m2k2rsJmk3rsΞm2k2rsHm1'k3rs-ε2k3ε3k2Ξ˜m2k2rsHm1k3rsΞm2x=Jmx-bm2qm2Hm1xΞ˜m2x=𝒥m2x-bm2qm2m2x𝒥mτx=Jm'x-mμκτxμrτJmxmτx=Hm1'x-mμκτxμrτHm1x

式中:τ=12对应于区域Ⅰ和区域Ⅱ中的相关参数;bm2qm2分别对应于区域Ⅱ中的外向传播场展开系数和内向传播场展开系数,满足

bm2qm2=𝒥m2k2rcJmk1rc-k2ε1k1ε2𝒥m1k2rcJmk2rcm2k2rcJmk1rc-k2ε1k1ε2𝒥m1k2rcHm1k2rc

式中:kτ=ωcετμrτ2-μκτ2μrττ=1,2)为两种铁磁材料中的波数;k3=ωcε3μ3为背景介质中的波数;JmxHm1x分别为m阶贝塞尔函数和第一类汉克尔函数;Jm'xHm1'x分别为对应的导数。

在得到Mie散射系数以后,可以通过计算散射截面来分析磁性EMA的散射性质。归一化的散射截面40定义为

Qsca=m=-+Sm2

在Mie散射理论的基础上,结合多重散射理论可以计算光子能带41,也可以进行透射率𝒯、反射率和吸收率𝒜的计算42,从而对磁性电磁超材料的非互易电磁性质进行深入分析。在相干势近似的条件下,还可以发展相应的等效介质理论,这在相关的文献3443中已有详细推导。进而,可以把磁性电磁超材料看作均匀的电磁介质,并计算相应的等效介电常数εeff和等效磁导率μeff,这有助于理解磁性电磁超构材料的吸收特性。

3 结果与讨论

为了实现非互易完美吸收,需要构建磁性电磁超构材料,把磁性EMA周期性排列成正方晶格结构。取晶格常数a=9 mm,对于磁性EMA,构成它的两种铁磁材料的饱和磁化强度分别为Ms1=0.300 TMs2=0.175 T。为了便于分析,内外层半径的初始值分别设定为rc=0.9 mmrs=2.3 mm,假定两种铁磁材料的阻尼因子相等,并设定其初始值为α1=α2=2×10-2,将通过优化来确定这些参数的具体值。对于外加偏置磁场H0,固定一个确定值H0=600 Oe,可在一定范围内调整偏置磁场的调控能力。由于工作频率主要受外加偏置磁场和饱和磁化强度影响,因此需要确认工作频率f的合适取值。取3层平板结构的磁性电磁超构材料作为研究对象,通过分析不同频率f的高斯光束在不同入射角θinc时的反射谱、透射谱和吸收谱来优化相关参数,计算结果如图2所示。正入射角对应左侧入射的高斯光束,负入射角对应右侧入射的高斯光束,可以明显看到,在3~5 GHz范围内反射率和吸收率𝒜在较大的正负入射角度时呈现出明显的差异,这就是非互易的吸收和反射。图2的两条虚线所标记的频率效果最为明显,可以确定为两个工作频率,分别为f1=3.90 GHzf2=4.56 GHz,从而可以实现双频带的非互易吸收。从反射谱可以看出,在大角度的左侧入射时反射率较高,而在吸收谱中大角度的右侧入射对应较强吸收,因此可以确定最优的入射角度为θinc=±70°。从图2(c)的优化相图还可以发现,入射角越小,非互易性越弱,其原因在于结构本身具有对称性,与法线越接近,左右两侧的差异就越小。因此,要在小角度下实现非互易完美吸收就需要破坏体系的结构对称性,比较直接的方法就是引入另外一个不同的EMA与磁性EMA构成二聚体,这样在参数优化以后就有机会在小角度下实现非互易吸收。这两个工作频率出现在MSP共振附近,这也是电磁波的非互易性得到增强的一个原因。

图 2. 在不同频率和入射角下,高斯光束在磁性电磁超构材料三层平板上的反射谱、透射谱和吸收谱。(a)反射谱;(b)透射谱;(c)吸收谱

Fig. 2. Reflectance, transmittance, and absorbance spectra as functions of frequency f and incident angle θinc for Gaussian beam incident upon a three-layered magnetic metamaterial slab. (a) Reflectance spectrum; (b) transmittance spectrum; (c) absorbance spectrum

下载图片 查看所有图片

在确定工作频率和入射角后,需要进一步优化磁性EMA的阻尼因子和内外层半径,从而进一步提升非互易性的效果。阻尼因子的影响相对较小,可以先分析其影响并确定其最优取值。把吸收率𝒜和反射率作为阻尼因子α1α2的函数可以计算优化相图,相关结果如图3(a)~(d)所示,分别对应于两个工作频率f1f2下高斯光束以θinc=±70°入射时的吸收和反射情况。从图3(a)、(b)可以看出,在较低的工作频率f1下,内层阻尼因子α1对相图的影响较小,而外层的阻尼因子α2则可以带来显著的影响,利用这一性质可以确定α2的最优值。对比图3(a)、(b)的结果可以发现,右侧-70°入射高斯光束的吸收谱和左侧70°入射高斯光束的反射谱不能同时达到最大值,所以只能通过权衡取中间的某一个值。当满足α2=1.2×10-2时,右侧入射时的吸收率达到90%,而左侧入射时的反射率达到80%。从图3(c)、(d)可以看出,在较高的工作频率f2下,内层阻尼因子α1对相图的影响较为明显,而外层阻尼因子α2的影响较小,可以借此确定α1的最优值。当满足α1=1.2×10-2时,吸收率和反射率都可以达到90%,姑且取两个阻尼因子相等且为1.2×10-2。为了达到更好的非互易效果,可以进一步优化磁性EMA内外层半径rcrs,其对应的优化相图如图3(e)~(h)所示。当满足rc=0.8 mmrs=2.25 mm时,在两个工作频率下吸收率都可以达到97%,同时反射率都可以超过80%,并在两个频率上同时实现了右侧入射高斯光束的完美吸收和左侧入射高斯光束的强反射这一非互易反射和吸收现象。

图 3. 磁性EMA的阻尼因子α1α2和内外层半径rcrs的优化。吸收率𝒜和反射率作为阻尼因子α1α2的函数,在工作频率f1=3.90 GHz下,(a)右侧-70°入射的吸收谱和(b)左侧70°入射的反射谱;在工作频率f2=4.56 GHz下,(c)右侧-70°入射的吸收谱和(d)左侧70°入射的反射谱。吸收率𝒜和反射率作为内外层半径rcrs的函数时,在工作频率f1=3.90 GHz下,(e)右侧-70°入射的吸收谱和(f)左侧70°入射的反射谱;在工作频率f2=4.56 GHz下,(g)右侧-70°入射的吸收谱和(h)左侧70°入射的反射谱

Fig. 3. Optimization of damping factors α1 and α2 as well as inner radius rc and outer radius rs of magnetic EMAs. By calculating 𝒜 and as functions of α1 and α2, (a) absorbance spectrum for θinc=-70° and (b) reflectance spectrum for θinc=70° at operating frequency f1=3.90 GHz; (c) absorbance spectrum for θinc=-70° and (d) reflectance spectrum for θinc=70° at operating frequency f2=4.56 GHz. By calculating 𝒜 and as functions of rc and rs, (e) absorbance spectrum for θinc=-70° and (f) reflectance spectrum for θinc=70° at operating frequency f1=3.90 GHz; (g) absorbance spectrum for θinc=-70° and (h) reflectance spectrum for θinc=70° at operating frequency f2=4.56 GHz

下载图片 查看所有图片

为了更加清晰地描述非互易吸收现象,将TM极化的高斯光束入射到三层结构的磁性电磁超构材料,通过计算电场的分布来分析非互易吸收的效果,对应的模拟结果如图4(a)~(d)所示。如果体系结构小于三层,会有少部分电磁波透射;当结构大于三层时,所对应的透射率基本为0,且非互易吸收的效果基本相同。入射高斯光束的腰宽等于2倍波长,高斯光束的焦点位于最外层中心磁性EMA位置,即x=0y=a。在较低的工作频率f1=3.90 GHz下,右侧入射的高斯光束被完美吸收,左侧入射的高斯光束只有少部分被吸收,而大部分被反射,这正是前文提到的非互易完美吸收现象。在较高的工作频率f2=4.56 GHz下,同样可以观察到类似的现象,从而实现双频带的非互易完美吸收。通过计算焦点处磁性EMA的角散射振幅,可以看到,右侧入射时电磁波的前向散射非常弱,如图4(e)、(g)所示,这会导致非常弱的反射,可以解释此时发生的完美吸收。然而,左侧入射时电磁波的散射以前向散射为主,后向散射较弱,如图4(f)、(h)所示,因此会导致较强的反射。角散射振幅呈现出显著的非互易特性,这种现象可以称为非互易晶格Kerker效应,它是由磁性电磁超构材料内不同原胞间的相互作用所导致的。Chen等33也设计了磁性超原子,并在近零折射率背景介质中实现了非互易Kerker效应,这也证实了背景介质和原胞间的相互作用对非互易性质的调制能力。如果阻尼因子α1α2较小,则很难保证非互易完美吸收,只能实现非互易反射,这在早期的工作44中已经得到证实。进一步计算高斯光束焦点处磁性EMA的电磁散射模式,可以发现,发生完美吸收时磁性EMA的共振模式得以激发,导致较强的局域场,如图4(i)、(k)所示。然而,发生强反射时磁性EMA的散射非常弱,如图4(j)、(l)所示。相应地,电磁波的吸收较少,这也是观察到强反射的原因。此外,在较低的工作频率f1=3.90 GHz下,磁性EMA的散射模式主要集中于外部壳层,此时的吸收主要取决于外层铁磁材料的MSP共振;在较高的工作频率f2=4.56 GHz下,磁性EMA的散射模式主要集中于内部核心区域,此时的吸收主要取决于内部铁磁材料的MSP共振。需要指出的是,当磁性EMA内层共振时,外层的场较强,这对于此时的完美吸收也具有一定的贡献。从图4的结果可以看出,在三层平板结构上光束的透射率为0,可将其视为具有非互易特性的镜面,可用于非互易光路的设计。非互易完美吸收的角度敏感性还可用于传感器设计。考虑到非互易完美吸收的高效性,可将该结构用于光学二极管或者开关设计,Fan等45就是利用级联式非线性超原子的非互易性实现了电磁二极管效应。

图 4. 高斯光束在三层平板结构的磁性电磁超构材料上的双频非互易完美吸收所对应的电场分布、中心原胞的角散射振幅以及焦点处磁性EMA的散射场模式。在工作频率f1=3.90 GHz下,(a)右侧-70°入射时的完美吸收和(b)左侧70°入射时的强反射电场分布;在工作频率f2=4.56 GHz下,(c)右侧-70°入射时的完美吸收和(d)左侧70°入射时的强反射电场分布;在工作频率f1=3.90 GHz下,(e)右侧-70°入射时的角散射振幅和(f)左侧70°入射时的角散射振幅;在工作频率f2=4.56 GHz下,(g)右侧-70°入射时的角散射振幅和(h)左侧70°入射时的角散射振幅;(i)~(l)焦点处磁性EMA的散射场模式

Fig. 4. Electric field patterns for Gaussian beam incident on three-layered magnetic metamaterial to demonstrate dual-band nonreciprocal perfect absorption, angular scattering amplitude (ASA) of central unit cell, and scattering modes for magnetic EMA at beam focus. At the operating frequency f1=3.90 GHz, (a) electric field pattern for θinc=-70° and (b) electric field pattern for θinc=70°; at the operating frequency f2=4.56 GHz, (c) electric field pattern for θinc=-70° and (d) electric field pattern for θinc=70°; At the operating frequency f1=3.90 GHz, (e) ASA for θinc=-70° and (f) ASA for θinc=70°; at the operating frequency f2=4.56 GHz, (g) ASA for θinc=-70° and (h) ASA for θinc=70°; (i)‒(l) corresponding scattering modes for magnetic EMAs at the beam focus

下载图片 查看所有图片

通过计算光子能带,可以进一步了解磁性电磁超材料的一些本征特性。采用多重散射理论对其进行严格计算,得到外加偏置磁场H0=600 Oe450 Oe时的光子能带,如图5(a)、(c)所示。可以观察到一系列密集的光子平带结构,基本上可以分为4组,这是由自旋波共振和MSP共振造成的35。由于两种铁磁材料的饱和磁化强度不同,内核的高饱和磁化强度Ms1对应高频共振频带,外层的低饱和磁化强度Ms2对应低频共振频带。由于两种磁性材料间的相互影响,对应Ms2的低频MSP共振频带出现在第三组共振频带中,对应Ms1的高频MSP共振频带明显被拉低,出现在频率最高的第四组频带中。通过等效介质理论可以更好地理解MSP共振,如图5(b)所示,等效介电常数εeff和等效磁导率μeff的实部和虚部分别由不同颜色的虚线和实线表示。虚部的峰值附近对应相关的共振,低频的蓝线峰对应电共振,高频的两个红线峰分别对应低频和高频MSP共振。而双频非互易完美吸收的工作频率就在MSP共振附近,如水平品红实线所示,这也解释了前文中非互易完美吸收与表面等离激元共振的紧密相关性。此外,通过把外加偏置磁场H0600 Oe降低到450 Oe,相应的MSP共振也向低频移动,这样可以灵活调制非互易完美吸收的工作频率,无疑增加了对非互易现象调制的自由度。事实上,通过反转外加偏置磁场还可以使非互易吸收反向,即将图4中反射和吸收的角度彼此切换。

图 5. 不同外加偏置磁场下磁性电磁超构材料的光子能带和等效电磁参数。外加偏置磁场H0=600 Oe时的(a)光子能带与(b)等效介电常数εeff和等效磁导率μeff;外加偏置磁场H0=450 Oe时的(c)光子能带与(d)等效介电常数εeff和等效磁导率μeff

Fig. 5. Photonic band diagrams and effective electromagnetic parameters under different bias magnetic fields (BMF). (a) Photonic band diagram under BMF H0=600 Oe; (b) effective permittivity εeff and permeability μeff under BMF H0=600 Oe; (c) photonic band diagram under BMF H0=450 Oe; (d) effective permittivity εeff and permeability μeff under BMF H0=450 Oe

下载图片 查看所有图片

非互易吸收和反射现象除了与MSP共振和非互易晶格Kerker效应有关外,还与单个磁性EMA本身的散射特性紧密相关。为了进一步揭示这一非互易现象的物理机理,根据式(8)计算磁性EMA的约化散射截面,其结果如图6(a)、(b)所示。该散射截面存在3个非对称反峰,它们对应于Fano共振。通过计算Mie散射系数可以揭示Fano共振的由来,其结果如图6(c)、(d)所示。可以看到,只有0阶和-1阶模式在散射过程中发挥了作用。最左侧的低频Fano反峰并不明显,姑且看成是由窄频带的0阶暗模式和宽频带的-1阶亮模式的叠加所构成的,这是因为此时的-1阶模式较弱,非互易性并不明显。而高频段的两个Fano反峰则源于宽频带的0阶亮模式和两个连续的窄频带-1阶暗模式,由于-1阶暗模式处于明显的共振状态,则此时的非互易性较为明显。需要指出的是,在图6+1模式非常弱,可以忽略不计。在普通的各向同性均匀介质柱中,±1阶的Mie散射系数相同,所以在磁性EMA中可称其为非互易Fano共振。前面所讨论的双频非互易完美吸收的工作频率恰好处在Fano反峰附近,例如图6的竖线所标记的频率,这也表明非互易Fano共振对于非互易完美吸收具有重要作用。当调整外加偏置磁场H0,使其由600 Oe降低到450 Oe时,非互易Fano共振与工作频率同步向低频移动,这与光子能带和等效介质理论的结果是一致的。在早期工作中,采用单种铁磁材料设计的磁性电磁超构材料能够实现非互易完美吸收,但是没有发现非互易Fano共振和非互易晶格Kerker效应42。与本文的磁性超原子不同,采用3种铁磁材料设计磁性超原子,能够激发高阶共振并增强散射强度,但是不利于非互易完美吸收的实现32。在最近报道的工作中,通过设计磁性EMA可以在单层超表面上实现非互易完美吸收,但是仅限于单频带下的非互易现象46。以磁性二聚体构建磁性电磁超表面,Zhang等47实现了基于圆偏振的非互易透射,并认为非互易与极化有关,而本研究则得出非互易性质与光束入射方向有关的结论。

图 6. 在不同的外加偏置磁场下,磁性EMA的归一化散射截面Qsca和Mie散射系数幅值Sm。外加偏置磁场H0=600 Oe时的(a)散射截面Qsca和(b) Mie散射系数幅值Sm;外加偏置磁场H0=450 Oe时的(c)散射截面Qsca和(d) Mie散射系数幅值Sm

Fig. 6. Normalized scattering cross section Qsca and amplitudes of Mie coefficients Sm of magnetic EMAs. (a) Normalized scattering cross section Qsca and (b) amplitudes of Mie coefficients Sm under BMF H0=600 Oe; (c) normalized scattering cross section Qsca and (d) amplitudes of Mie coefficients Sm under BMF H0=450 Oe

下载图片 查看所有图片

通过前面的讨论可以明显看到,外加偏置磁场对工作频率具有灵活调制能力。为了更加清晰地阐述这一性质,在图7中给出了吸收谱和反射谱作为外加偏置磁场H0和频率f的相图。在图7(a)的吸收谱中,两条红色条纹出现的位置代表高斯光束右侧-70°入射时的完美吸收。可以看到,随着外加偏置磁场H0的增强,工作频率线性增大,表明外加偏置磁场H0对工作频率具有灵活调制能力。对应地,图7(b)所示的反射谱在整个参数空间中基本上呈现出较为明显的反射,表明体系始终保持较强的非互易性。为了定量描述非互易效果,从相图中选择两个特定的外加偏置磁场H0=600 Oe450 Oe,见图7(a)、(b)中的白色虚线所标记的位置。将对应的吸收率𝒜和反射率以线图的方式重新绘制于图7(c)、(d),分别由红色虚线和蓝色实线表示。可以明显看出,当外加偏置磁场H0=600 Oe时,存在两个吸收峰,其对应的吸收率大于97%,而此时的工作频率为f1=3.90 GHzf2=4.56 GHz,刚好与前文的分析结果一致。当外加偏置磁场H0=450 Oe时,两个吸收峰明显向低频方向移动,对应的工作频率分别为f1'=3.42 GHzf2'=4.13 GHz,但是吸收率和反射率几乎保持不变,仍然能维持较好的非互易特性。

图 7. 吸收谱和反射谱作为外加偏置磁场H0和频率f的相图来反映工作频率的可调性以及非互易吸收和反射特性。(a)右侧-70°入射时的吸收谱;(b)左侧70°入射时的反射谱;(c)外加偏置磁场H0=600 Oe时的吸收率𝒜和反射率;(d)外加偏置磁场H0=450 Oe时的吸收率𝒜和反射率

Fig. 7. Transmittance and reflectance spectra as phase diagrams with respect to BMF H0 and frequency f to demonstrate the tunability of operating frequency and the performance of nonreciprocal absorption and reflection. (a) Absorbance spectrum for θinc=-70°; (b) reflectance spectrum for θinc=70°; (c) absorbance 𝒜 and reflectance under BMF H0=600 Oe; (d) absorbance 𝒜 and reflectance under BMF H0=450 Oe

下载图片 查看所有图片

为了在实验上验证双频非互易完美吸收,需要把有限长的磁性EMA置于平行板金属波导中进行实验测量。这方面的实验目前已经非常成熟,比如:2009年Wang等37在实验上通过透射谱的测量证实了单向拓扑边界态的存在,并进一步验证了其对缺陷干扰的鲁棒性特征;2022年Chen等48在实验上通过透射谱的测量和电场强度分布的扫描,在旋磁光子晶体中预测和证实了与鲁棒特性有关的单向体态的存在;2024年Wu等49在实验上通过透射谱的测量,验证了基于磁表面等离激元的反手性光学界面态的存在。若想通过实验验证本文的非互易完美吸收现象,也需要进行透射谱、反射谱的测量,以及进行空间电场强度分布的扫描。这些测量方法在上述几项工作中都能够实现,因此不会有明显的技术困难,这也证明了该现象在实验上的可行性。本文设计的磁性EMA涉及两种磁性材料,如果按照理论设计方案制备,则为实验验证提供直接证据,但是这样制备磁性EMA或许存在技术难度,因此需要提供另一种备选方案:对于外面的铁磁材料包层,可以通过小的铁磁柱阵列进行替换,并优化小磁性柱半径和间距,使其效果与外层铁磁材料等效即可,这样就可以适当降低实验难度。

4 结 论

采用两种饱和磁化强度不同的铁磁材料设计了亚波长磁性EMA,并且以其为基本单元构建了具有正方晶格的电磁超材料,它可以实现双频带电磁波的非互易完美吸收。计算结果表明:对于右侧-70°入射的高斯光束,其吸收率超过97%;从左侧70°入射的高斯光束的反射率超过80%,实现了显著的电磁波的非互易性质。等效介质理论和光子能带的计算结果证实了MSP共振是产生非互易现象的本质原因,而非互易晶格Kerker效应则增强了非互易吸收和反射的效果。通过单个磁性EMA散射截面和Mie散射系数的计算,可以发现非互易Fano共振的出现也与非互易现象紧密相关。其原因在于,在工作频率附近只存在0阶的宽频带亮模式和-1阶的窄频带暗模式,它们的干涉结果导致了两个非对称Fano反峰的形成,是单个磁性EMA的非互易性质与非互易完美吸收之间联系的纽带。此外,通过改变外加偏置磁场可以灵活调制工作频率和非互易Fano共振,为非互易光学和微波光子学方面的研究和应用提供了便利条件。

参考文献

[1] Xie X, Yan S, Dang J C, et al. Topological cavity based on slow-light topological edge mode for broadband Purcell enhancement[J]. Physical Review Applied, 2021, 16(1): 014036.

[2] Wen X Y, Deng S K. Plasmonic nanostructure lattices for high-performance sensing[J]. Advanced Optical Materials, 2023, 11(16): 2300401.

[3] Huang T Y, Tu X C, Shen C Q, et al. Observation of chiral and slow plasmons in twisted bilayer graphene[J]. Nature, 2022, 605(7908): 63-68.

[4] Yin Y, Li S L, Böttner S, et al. Localized surface plasmons selectively coupled to resonant light in tubular microcavities[J]. Physical Review Letters, 2016, 116(25): 253904.

[5] Duan J H, Alfaro-Mozaz F J, Taboada-Gutiérrez J, et al. Active and passive tuning of ultranarrow resonances in polaritonic nanoantennas[J]. Advanced Materials, 2022, 34(10): e2104954.

[6] Ruan Z C, Fan S H. Superscattering of light from subwavelength nanostructures[J]. Physical Review Letters, 2010, 105(1): 013901.

[7] Zouros G P, Kolezas G D, Almpanis E, et al. Three-dimensional giant invisibility to superscattering enhancement induced by Zeeman-split modes[J]. ACS Photonics, 2021, 8(5): 1407-1412.

[8] Yeşilyurt A T M, Sanz-Paz M, Zhu F J, et al. Unidirectional meta-emitters based on the Kerker condition assembled by DNA origami[J]. ACS Nano, 2023, 17(19): 19189-19196.

[9] Limonov M F. Fano resonance for applications[J]. Advances in Optics and Photonics, 2021, 13(3): 703-771.

[10] Badloe T, Rho J. Enabling new frontiers of nanophotonics with metamaterials, photonic crystals, and plasmonics[J]. Nanophotonics, 2024, 13(7): 965-969.

[11] 王卓, 何琼, 孙树林, 等. 基于复合相位超构表面的多功能电磁波调控(特邀)[J]. 光学学报, 2024, 44(10): 1026008.

    Wang Z, He Q, Sun S L, et al. Multifunctional manipulation of electromagnetic waves based on composite-phase metasurfaces (invited)[J]. Acta Optica Sinica, 2024, 44(10): 1026008.

[12] Tao H, Landy N I, Bingham C M, et al. A metamaterial absorber for the terahertz regime: design, fabrication and characterization[J]. Optics Express, 2008, 16(10): 7181-7188.

[13] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[14] Zhu J, Yin J G, Wu C S. Tunable perfect absorber of graphene metamaterial in the terahertz band and its sensing properties[J]. Advanced Photonics Research, 2022, 3(4): 2100291.

[15] Bao Z Y, Wang J C, Hu Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 2019, 27(22): 31435-31445.

[16] Chang W J, Sakotic Z, Ware A, et al. Wavelength tunable infrared perfect absorption in plasmonic nanocrystal monolayers[J]. ACS Nano, 2024, 18(1): 972-982.

[17] Ge J H, Zhang C, Zhang Y Q, et al. Transparent bilayer ITO metasurface with bidirectional and coherently controlled microwave absorption[J]. Advanced Optical Materials, 2023, 11(21): 2301268.

[18] Chen Y M, Fan Y S, Zhang Z Z, et al. High resolution graphene angle sensor based on ultra-narrowband optical perfect absorption[J]. Optics Express, 2021, 29(25): 41206-41212.

[19] Wu F, Wu X H, Xiao S Y, et al. Broadband wide-angle multilayer absorber based on a broadband omnidirectional optical Tamm state[J]. Optics Express, 2021, 29(15): 23976-23987.

[20] Feng R, Qiu J, Cao Y Y, et al. Omnidirectional and polarization insensitive nearly perfect absorber in one dimensional meta-structure[J]. Applied Physics Letters, 2014, 105(18): 181102.

[21] Wang W H, Besteiro L V, Liu T J, et al. Generation of hot electrons with chiral metamaterial perfect absorbers: giant optical chirality for polarization-sensitive photochemistry[J]. ACS Photonics, 2019, 6(12): 3241-3252.

[22] Li H J, Wei G G, Zhou H M, et al. Polarization-independent near-infrared superabsorption in transition metal dichalcogenide Huygens metasurfaces by degenerate critical coupling[J]. Physical Review B, 2022, 105(16): 165305.

[23] Sun Y, Tan W, Li H Q, et al. Experimental demonstration of a coherent perfect absorber with PT phase transition[J]. Physical Review Letters, 2014, 112(14): 143903.

[24] Wang C, Shen X, Chu H C, et al. Realization of broadband coherent perfect absorption of spoof surface plasmon polaritons[J]. Applied Physics Letters, 2022, 120(17): 171703.

[25] Saadabad R M, Huang L J, Miroshnichenko A E. Polarization-independent perfect absorber enabled by quasibound states in the continuum[J]. Physical Review B, 2021, 104(23): 235405.

[26] Castillo M A, Estévez-Varela C, Wardley W P, et al. Enhanced light absorption in all-polymer biomimetic photonic structures by near-zero-index organic matter[J]. Advanced Functional Materials, 2022, 32(21): 2113039.

[27] Genov D A, Zhang S, Zhang X. Mimicking celestial mechanics in metamaterials[J]. Nature Physics, 2009, 5: 687-692.

[28] Liu S Y, Li L, Lin Z F, et al. Graded index photonic hole: analytical and rigorous full wave solution[J]. Physical Review B, 2010, 82(5): 054204.

[29] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106.

[30] 温广锋, 赵领中, 张琳, 等. 基于柱对称梯度折射率体系的可调控光束传输[J]. 物理学报, 2022, 71(14): 144201.

    Wen G F, Zhao L Z, Zhang L, et al. Tunable beam propagation based on cylindrically symmetric gradient index system[J]. Acta Physica Sinica, 2022, 71(14): 144201.

[31] 张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020.

    Zhang Z J, Yan W, Qin J, et al. Integrated nonreciprocal photonic devices (invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513020.

[32] Chen Y Y, He J F, Zhao L Z, et al. Nonreciprocal Fano resonance enhanced unidirectional scattering by subwavelength magnetic meta-atoms[J]. Results in Physics, 2023, 52: 106905.

[33] Chen Y Y, Zhang Y P, Ba Q T, et al. ENZ medium triggered collapse of Fano resonances and emergence of generalized nonreciprocal Kerker effects by subwavelength hybrid meta-atoms[J]. Physical Review B, 2023, 108(23): 235413.

[34] Chen Y Y, Zhang Y P, Zhao L Z, et al. Rectifying nonreciprocal perfect absorber based on generalized effective-medium theory for composite magnetic metamaterials[J]. Photonics, 2022, 9(10): 699.

[35] Liu S Y, Du J J, Lin Z F, et al. Formation of robust and completely tunable resonant photonic band gaps[J]. Physical Review B, 2008, 78(15): 155101.

[36] Liu S Y, Lu W L, Lin Z F, et al. Molding reflection from metamaterials based on magnetic surface plasmons[J]. Physical Review B, 2011, 84(4): 045425.

[37] Wang Z, Chong Y D, Joannopoulos J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 2009, 461(7265): 772-775.

[38] Houbi A, Aldashevich Z A, Atassi Y, et al. Microwave absorbing properties of ferrites and their composites: a review[J]. Journal of Magnetism and Magnetic Materials, 2021, 529: 167839.

[39] PozarD M. Microwave engineering[M]. 4th ed. New York: John Wiley & Sons, 2012: 451-464.

[40] Kumar R, Kajikawa K. Superscattering from cylindrical hyperbolic metamaterials in the visible region[J]. Optics Express, 2020, 28(2): 1507-1517.

[41] Liu S Y, Lin Z F. Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres[J]. Physical Review E, 2006, 73(6): 066609.

[42] Yu J J, Chen H J, Wu Y B, et al. Magnetically manipulable perfect unidirectional absorber based on nonreciprocal magnetic surface plasmon[J]. Europhysics Letters, 2012, 100(4): 47007.

[43] Jin J F, Liu S Y, Lin Z F, et al. Effective-medium theory for anisotropic magnetic metamaterials[J]. Physical Review B, 2009, 80(11): 115101.

[44] Chui S T, Liu S Y, Lin Z F. Reflected wave of finite circulation from magnetic photonic crystals[J]. Journal of Physics: Condensed Matter, 2010, 22(18): 182201.

[45] Fan Y C, Han J, Wei Z Y, et al. Subwavelength electromagnetic diode: one-way response of cascading nonlinear meta-atoms[J]. Applied Physics Letters, 2011, 98(15): 151903.

[46] He J F, Zhang L, Zhao L Z, et al. Lattice Kerker effect enabled single-layer nonreciprocal perfect absorbers by hybrid magnetic meta-atoms[J]. Optics Letters, 2025, 50(1): 93-96.

[47] Zhang Y J, Jing L Q, Niu C N, et al. Broadband nonreciprocal gyromagnetic metasurface via magnetic Kerker-type dimers[J]. Applied Physics Letters, 2024, 124(23): 231701.

[48] Chen J F, Li Z Y. Prediction and observation of robust one-way bulk states in a gyromagnetic photonic crystal[J]. Physical Review Letters, 2022, 128(25): 257401.

[49] Wu H B, Xu K, Shi Y C, et al. Photonic antichiral edge states induced by magnetic surface plasmon resonance[J]. Applied Physics Letters, 2024, 124(3): 031101.

何佳飞, 毛宏宣, 陈毅云, 张琳, 吴华兵, 刘士阳. 基于磁性电磁超原子的双频非互易完美吸收[J]. 光学学报, 2025, 45(8): 0826001. Jiafei He, Hongxuan Mao, Yiyun Chen, Lin Zhang, Huabing Wu, Shiyang Liu. Dual-Band Nonreciprocal Perfect Absorption Based on Magnetic Electromagnetic Meta-Atoms[J]. Acta Optica Sinica, 2025, 45(8): 0826001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!