基于磁性电磁超原子的双频非互易完美吸收【增强内容出版】
The advent of electromagnetic meta-atoms (EMAs) significantly alters the interaction between electromagnetic waves and subwavelength particles, enabling the emergence of novel phenomena associated with scattering and absorption, leading to promising applications. The physics behind these properties is rooted in the unique configurations of EMAs, which enable selective excitation of multipolar modes with custom-made amplitudes, resulting in phenomena such as superscattering, invisibility, Fano resonance, and Kerker effect. Ferrite materials possess intrinsic magnetic responses that allow the design of magnetic EMAs with nonreciprocal features, arising from time-reversal symmetry breaking in ferrites under a bias magnetic field (BMF). By periodically arranging an array of EMAs, magnetic metamaterials (MMs) can be constructed to manipulate electromagnetic waves nonreciprocally, particularly near the magnetic surface plasmon (MSP) resonance. By designing magnetic EMAs with two types of yttrium iron garnet (YIG) ferrite materials with different saturation magnetizations, two MSP resonances can be achieved. As a result, MMs constructed from these magnetic EMAs exhibit a nonreciprocal perfect absorption effect at two different frequencies for incident Gaussian beams with transverse magnetic (TM) polarization. Specifically, in one direction, the structure acts as a perfect absorber, while in the mirror-symmetric direction, the beam is mainly reflected. This nonreciprocal phenomenon is closely related to the lattice Kerker effect and nonreciprocal Fano resonance. The magnetic EMAs serve as fundamental elements for nonreciprocal optics and microwave photonics.
The scattering properties of magnetic EMAs can be solved using the generalized Mie theory, which relates the scattering field to the incident field via Mie coefficients. The scattering cross sections of the magnetic EMAs are calculated based on these coefficients, and nonreciprocal Fano resonances are visualized by examining the scattering cross sections. By incorporating multiple scattering theory, the scattering field generated by multiple magnetic EMAs is rigorously calculated, enabling a deeper analysis of nonreciprocal scattering behavior. In addition, photonic band diagrams, absorbance, and reflectance are calculated to optimize the configurations of magnetic EMAs and the direction of the incident Gaussian beam, ensuring perfect absorption at a specified direction while achieving substantial reflection in the mirror-symmetric direction. Effective-medium theory is also employed to retrieve the effective constitutive parameters of MMs, identifying the MSP resonance frequencies, which are compared with photonic band diagrams.
By periodically arranging an array of magnetic EMAs in a square lattice, with a lattice constant a=9 mm, we construct MMs that serve as nonreciprocal perfect absorbers. The saturation magnetizations of the two ferrite materials in the magnetic EMAs are Ms1=0.300 T and Ms2=0.175 T, with an inner radius rc=0.9 mm, an outer radius rs=2.3 mm, and damping factors set as a1=a2=2×10-2. The BMF is set to H0=600 Oe. By plotting transmittance and reflectance as functions of frequency f and incident angle θinc, we identify two operating frequencies f1=3.90 GHz and f2=5.56 GHz, with corresponding incident angles θinc=±70° (Fig. 2). Next, keeping other parameters constant, we plot the transmittance and reflectance as functions of a1 and a2 and optimize the damping factor to a1=a2=1.2×10-2 (Fig. 3). Further optimization of the inner and outer radii yields rc=0.8 mm and rs=2.25 mm, achieving an absorbance greater than 97% and a reflectance exceeding 80% in the mirror-symmetric direction (Fig. 3). Using multiple scattering theory, full-wave simulations reveal nonreciprocal perfect absorption (NPA) at two different frequencies. The lower-frequency NPA corresponds to the resonant mode in the outer layer, while the higher-frequency NPA corresponds to the resonant mode in the core. By plotting the angular scattering amplitude of the unit cell at the central position, the nonreciprocal lattice Kerker effect is observed. Specifically, perfect absorption for the rightward incident beam corresponds to backward scattering, while strong reflection occurs for the leftward incident beam due to forward scattering (Fig. 4). By comparing the photonic band diagrams with effective-medium theory, MSP resonances at two different frequencies are confirmed, with the operating frequencies falling within the vicinity of the MSP resonances. In addition, the operating frequencies can be flexibly tuned upwards or downwards by adjusting the BMF, as evidenced by the frequency shift of the MSP resonances (Fig. 5). To further investigate the scattering properties of magnetic EMAs and their connection to NPA, the scattering cross section and the amplitude of Mie coefficients are calculated as functions of frequency. Two asymmetric Fano dips are identified near the operating frequencies, resulting from the interference between the broadband 0th-order mode and the narrowband -1st-order mode. Moreover, the tunability of both the Fano resonances and operating frequencies via the BMF introduces an extra degree of freedom (Figs. 6 and 7).
Magnetic EMAs composed of two types of ferrite materials with different saturation magnetizations have been designed, serving as building blocks for MMs to achieve dual-band NPA. At a specified incident angle, the Gaussian beam is absorbed with an absorbance exceeding 97%, while in the mirror-symmetric direction, it is strongly reflected with a reflectance over 80%. The NPA effect arises from the time-reversal symmetry breaking nature of MSP resonance and the nonreciprocal lattice Kerker effect. The phenomenon is also closely related to the nonreciprocal Fano resonances of isolated magnetic EMAs, originating from the interaction between the broadband bright mode and the narrowband dark mode associated with angular momentum channels m=0 and m=-1. In addition, both the operating frequencies and Fano resonances can be flexibly controlled by the BMF, enhancing potential applications in nonreciprocal optics and microwave photonics.
1 引 言
光与物质的相互作用是光学研究领域中最基本的研究课题之一,对于各种奇异光学现象的实现和新颖光学性质的探索都具有重要作用,随着理论研究的深化和实验技术的不断提高,相关的研究也取得了迅速发展。通过多种不同的方式可以增强光与物质的相互作用,比如基于光子晶体的慢光体系[1],基于金属或者石墨烯的等离激元共振体系[2-3],具有亚波长特征的纳米微腔或者纳米天线体系等[4-5]。通过这些体系或者可以实现光场的强局域性,或者可以实现局域光场的显著增强,从而极大地增强光与物质的相互作用,因此在亚波长尺度上进行光学结构设计就显得尤为重要。这种具有特定结构的人造亚波长电磁结构也称为电磁超原子(EMA),它可以从根本上调制光与物质的相互作用。EMA具有这种特性的根源在于通过巧妙设计EMA,其散射场多级模式的强度和相位都得到优化,从而达到不同的预期效果。超散射现象是一种典型的同相位多级模式的相干叠加[6];隐身现象则恰恰相反,它对应于多级模式的相干相消[7];Kerker效应对应于特定方向上多极模式相干增强,而在其相反方向上多极模式相干相消[8];Fano共振现象源于窄频带高阶模式和宽频带低阶模式的相干结果[9]。这些现象从物理层面上丰富了光学的研究内容,同时也实现了多种新颖的电磁特性和极具潜力的可能应用。
把EMA周期性或非周期性排列起来可以构建电磁超材料和电磁超表面,这引起了国内外科研团队的广泛关注,与之相关的现象和典型应用也得到了深入研究[10-11]。一个典型的应用就是实现完美吸收体(即人造黑体),其相比于黑体具有更多的奇异性质和独特功能。这一现象是由Padilla团队[12-13]于2008年通过构建电磁超材料在微波段和太赫兹频段首先实现的,之后大量具备不同特征的完美吸收体被陆续设计出来。从工作频率来看,完美吸收体有单频带[12-13]、双频带[14]、多频带[15],以及宽频带[16]和窄频带[12-13]等工作模式;从入射光角度来看,有单方向[12-13]、双方向[17]、窄角度[18]、宽角度[19],以及全角度[20]等实现方式;从入射光的偏振特征来看,可以简单分为偏振相关[21]和偏振无关[22]两种类型。针对完美吸收体的研究在不同的光学体系中得到了深入探讨,比如:在非厄米光学体系中,通过调制空间时间(PT)对称性实现完美吸收[23];作为激光的时间反演逆过程,通过反激光的方式也可以实现相干完美吸收[24];在高品质因子结构单元所构成的电磁超表面中,通过激发连续域束缚态(BIC)可以实现窄频带完美吸收[25];采用零折射材料尤其是近零介电常数(ENZ)材料来增强光与物质的相互作用,也可以实现完美吸收[26];采用具有梯度折射率的电磁“黑洞”体系[27-28],可以实现类似于天体力学的全角度电磁波完美吸收[29-30]。对于完美吸收体的研究已经与越来越多的物理机制联系,因此能够实现更多的电磁现象,其电磁特性也越来越丰富。
本文采用具有本征磁性的铁磁材料来设计磁性EMA,由于在外加偏置磁场下磁性材料的时间反演对称性破缺,因此磁性超原子必然带来非互易电磁特性[31]。采用磁性EMA已经实现非互易Fano共振[32]和非互易Kerker效应[33-34],因此采用磁性EMA所构建的磁性电磁超材料也具有与之相关的非互易特性。Liu等[35]实现了在单频带工作的非互易完美吸收体,那么可否实现具有双频带的非互易吸收体?为此,本文采用具有不同饱和磁化强度的两种铁磁材料来构建磁性EMA,以其构建磁性的电磁超构材料在两个频率下实现磁表面等离激元(MSP)共振。MSP共振可以增强非互易电磁特性[36],因此通过优化磁性EMA有望在两个MSP共振频率附近实现非互易完美吸收。本研究结果表明,非互易完美吸收与磁性电磁超材料内的超原子间相互作用导致的晶格非互易Kerker效应紧密相关。而且,在两个工作频率附近,磁性EMA的0阶宽频带共振模式与-1阶窄频带共振模式的相互作用还导致了两个非互易的Fano共振,这也是非互易效应得到增强的原因。本文的研究工作可以进一步加深对非互易散射和非互易吸收的理解,对于非互易光学的研究和相关应用具有重要价值。
2 结构设计与理论方法
为了实现双频段的非互易完美吸收,采用两种具有不同饱和磁化强度的铁磁材料构建双层柱状磁性EMA,其几何结构和相关参数如
式中:
很显然,当铁磁材料的饱和磁化强度不同时,其对应的特征频率

图 1. 双层磁性EMA的示意图。内核铁磁材料的相对介电常数为 ,相对磁导率为 ,饱和磁化强度为 ,半径为 ;外层铁磁材料的相对介电常数为 ,相对磁导率为 ,饱和磁化强度为 ,半径为 。背景介质的相对介电常数和相对磁导率分别为 和 ,外加偏置磁场 沿着 方向,入射电磁波具有横磁(TM)极化,其电场极化也沿着 方向
Fig. 1. Schematic diagram of subwavelength magnetic electromagnetic meta-atom (EMA) made of two kinds of ferrite materials with the inner radius and the outer radius . The inner ferrite material has the relative permittivity , the relative permeability , and the saturation magnetization ; the outer ferrite material has the relative permittivity , the relative permeability , and the saturation magnetization . The bias magnetic field (BMF) is exerted along direction and the incident electromagnetic field possesses the transverse magnetic (TM) polarization with the electric field along direction
在构建磁性EMA后,需要深入分析它的电磁性质,采用推广的Mie散射理论可以严格求解磁性EMA散射问题。近期关于磁性EMA的非互易Fano共振的研究已经对这一问题进行了完整的理论推导[32],本文直接给出Mie散射系数的结果:
式中:
式中:
在得到Mie散射系数以后,可以通过计算散射截面来分析磁性EMA的散射性质。归一化的散射截面[40]定义为
在Mie散射理论的基础上,结合多重散射理论可以计算光子能带[41],也可以进行透射率
3 结果与讨论
为了实现非互易完美吸收,需要构建磁性电磁超构材料,把磁性EMA周期性排列成正方晶格结构。取晶格常数

图 2. 在不同频率和入射角下,高斯光束在磁性电磁超构材料三层平板上的反射谱、透射谱和吸收谱。(a)反射谱;(b)透射谱;(c)吸收谱
Fig. 2. Reflectance, transmittance, and absorbance spectra as functions of frequency and incident angle for Gaussian beam incident upon a three-layered magnetic metamaterial slab. (a) Reflectance spectrum; (b) transmittance spectrum; (c) absorbance spectrum
在确定工作频率和入射角后,需要进一步优化磁性EMA的阻尼因子和内外层半径,从而进一步提升非互易性的效果。阻尼因子的影响相对较小,可以先分析其影响并确定其最优取值。把吸收率

图 3. 磁性EMA的阻尼因子 、 和内外层半径 、 的优化。吸收率 和反射率 作为阻尼因子 和 的函数,在工作频率 下,(a)右侧-70°入射的吸收谱和(b)左侧70°入射的反射谱;在工作频率 下,(c)右侧-70°入射的吸收谱和(d)左侧70°入射的反射谱。吸收率 和反射率 作为内外层半径 和 的函数时,在工作频率 下,(e)右侧-70°入射的吸收谱和(f)左侧70°入射的反射谱;在工作频率 下,(g)右侧-70°入射的吸收谱和(h)左侧70°入射的反射谱
Fig. 3. Optimization of damping factors and as well as inner radius and outer radius of magnetic EMAs. By calculating and as functions of and , (a) absorbance spectrum for and (b) reflectance spectrum for =70° at operating frequency ; (c) absorbance spectrum for and (d) reflectance spectrum for at operating frequency . By calculating and as functions of and , (e) absorbance spectrum for and (f) reflectance spectrum for =70° at operating frequency ; (g) absorbance spectrum for and (h) reflectance spectrum for =70° at operating frequency
为了更加清晰地描述非互易吸收现象,将TM极化的高斯光束入射到三层结构的磁性电磁超构材料,通过计算电场的分布来分析非互易吸收的效果,对应的模拟结果如

图 4. 高斯光束在三层平板结构的磁性电磁超构材料上的双频非互易完美吸收所对应的电场分布、中心原胞的角散射振幅以及焦点处磁性EMA的散射场模式。在工作频率 下,(a)右侧 入射时的完美吸收和(b)左侧 入射时的强反射电场分布;在工作频率 下,(c)右侧 入射时的完美吸收和(d)左侧 入射时的强反射电场分布;在工作频率 下,(e)右侧 入射时的角散射振幅和(f)左侧 入射时的角散射振幅;在工作频率 下,(g)右侧 入射时的角散射振幅和(h)左侧 入射时的角散射振幅;(i)~(l)焦点处磁性EMA的散射场模式
Fig. 4. Electric field patterns for Gaussian beam incident on three-layered magnetic metamaterial to demonstrate dual-band nonreciprocal perfect absorption, angular scattering amplitude (ASA) of central unit cell, and scattering modes for magnetic EMA at beam focus. At the operating frequency , (a) electric field pattern for and (b) electric field pattern for ; at the operating frequency , (c) electric field pattern for and (d) electric field pattern for ; At the operating frequency , (e) ASA for and (f) ASA for ; at the operating frequency , (g) ASA for and (h) ASA for ; (i)‒(l) corresponding scattering modes for magnetic EMAs at the beam focus
通过计算光子能带,可以进一步了解磁性电磁超材料的一些本征特性。采用多重散射理论对其进行严格计算,得到外加偏置磁场

图 5. 不同外加偏置磁场下磁性电磁超构材料的光子能带和等效电磁参数。外加偏置磁场 时的(a)光子能带与(b)等效介电常数 和等效磁导率 ;外加偏置磁场 时的(c)光子能带与(d)等效介电常数 和等效磁导率
Fig. 5. Photonic band diagrams and effective electromagnetic parameters under different bias magnetic fields (BMF). (a) Photonic band diagram under BMF ; (b) effective permittivity and permeability under BMF ; (c) photonic band diagram under BMF ; (d) effective permittivity and permeability under BMF
非互易吸收和反射现象除了与MSP共振和非互易晶格Kerker效应有关外,还与单个磁性EMA本身的散射特性紧密相关。为了进一步揭示这一非互易现象的物理机理,根据

图 6. 在不同的外加偏置磁场下,磁性EMA的归一化散射截面 和Mie散射系数幅值 。外加偏置磁场 时的(a)散射截面 和(b) Mie散射系数幅值 ;外加偏置磁场 时的(c)散射截面 和(d) Mie散射系数幅值
Fig. 6. Normalized scattering cross section and amplitudes of Mie coefficients of magnetic EMAs. (a) Normalized scattering cross section and (b) amplitudes of Mie coefficients under BMF ; (c) normalized scattering cross section and (d) amplitudes of Mie coefficients under BMF
通过前面的讨论可以明显看到,外加偏置磁场对工作频率具有灵活调制能力。为了更加清晰地阐述这一性质,在

图 7. 吸收谱和反射谱作为外加偏置磁场 和频率 的相图来反映工作频率的可调性以及非互易吸收和反射特性。(a)右侧-70°入射时的吸收谱;(b)左侧70°入射时的反射谱;(c)外加偏置磁场 时的吸收率 和反射率 ;(d)外加偏置磁场 时的吸收率 和反射率
Fig. 7. Transmittance and reflectance spectra as phase diagrams with respect to BMF and frequency to demonstrate the tunability of operating frequency and the performance of nonreciprocal absorption and reflection. (a) Absorbance spectrum for ; (b) reflectance spectrum for ; (c) absorbance and reflectance under BMF ; (d) absorbance and reflectance under BMF
为了在实验上验证双频非互易完美吸收,需要把有限长的磁性EMA置于平行板金属波导中进行实验测量。这方面的实验目前已经非常成熟,比如:2009年Wang等[37]在实验上通过透射谱的测量证实了单向拓扑边界态的存在,并进一步验证了其对缺陷干扰的鲁棒性特征;2022年Chen等[48]在实验上通过透射谱的测量和电场强度分布的扫描,在旋磁光子晶体中预测和证实了与鲁棒特性有关的单向体态的存在;2024年Wu等[49]在实验上通过透射谱的测量,验证了基于磁表面等离激元的反手性光学界面态的存在。若想通过实验验证本文的非互易完美吸收现象,也需要进行透射谱、反射谱的测量,以及进行空间电场强度分布的扫描。这些测量方法在上述几项工作中都能够实现,因此不会有明显的技术困难,这也证明了该现象在实验上的可行性。本文设计的磁性EMA涉及两种磁性材料,如果按照理论设计方案制备,则为实验验证提供直接证据,但是这样制备磁性EMA或许存在技术难度,因此需要提供另一种备选方案:对于外面的铁磁材料包层,可以通过小的铁磁柱阵列进行替换,并优化小磁性柱半径和间距,使其效果与外层铁磁材料等效即可,这样就可以适当降低实验难度。
4 结 论
采用两种饱和磁化强度不同的铁磁材料设计了亚波长磁性EMA,并且以其为基本单元构建了具有正方晶格的电磁超材料,它可以实现双频带电磁波的非互易完美吸收。计算结果表明:对于右侧-70°入射的高斯光束,其吸收率超过97%;从左侧70°入射的高斯光束的反射率超过80%,实现了显著的电磁波的非互易性质。等效介质理论和光子能带的计算结果证实了MSP共振是产生非互易现象的本质原因,而非互易晶格Kerker效应则增强了非互易吸收和反射的效果。通过单个磁性EMA散射截面和Mie散射系数的计算,可以发现非互易Fano共振的出现也与非互易现象紧密相关。其原因在于,在工作频率附近只存在0阶的宽频带亮模式和-1阶的窄频带暗模式,它们的干涉结果导致了两个非对称Fano反峰的形成,是单个磁性EMA的非互易性质与非互易完美吸收之间联系的纽带。此外,通过改变外加偏置磁场可以灵活调制工作频率和非互易Fano共振,为非互易光学和微波光子学方面的研究和应用提供了便利条件。
[11] 王卓, 何琼, 孙树林, 等. 基于复合相位超构表面的多功能电磁波调控(特邀)[J]. 光学学报, 2024, 44(10): 1026008.
[30] 温广锋, 赵领中, 张琳, 等. 基于柱对称梯度折射率体系的可调控光束传输[J]. 物理学报, 2022, 71(14): 144201.
[31] 张子健, 严巍, 秦俊, 等. 集成非互易光学器件(特邀)[J]. 光学学报, 2024, 44(15): 1513020.
[39] PozarD M. Microwave engineering[M]. 4th ed. New York: John Wiley & Sons, 2012: 451-464.
Article Outline
何佳飞, 毛宏宣, 陈毅云, 张琳, 吴华兵, 刘士阳. 基于磁性电磁超原子的双频非互易完美吸收[J]. 光学学报, 2025, 45(8): 0826001. Jiafei He, Hongxuan Mao, Yiyun Chen, Lin Zhang, Huabing Wu, Shiyang Liu. Dual-Band Nonreciprocal Perfect Absorption Based on Magnetic Electromagnetic Meta-Atoms[J]. Acta Optica Sinica, 2025, 45(8): 0826001.