激光与光电子学进展, 2020, 57 (11): 111416, 网络出版: 2020-06-02   

飞秒激光空间光束整形加工技术研究进展 下载: 2261次特邀综述

Progress in Femtosecond Laser Processing Technology Based on Space Beam Shaping
作者单位
中南大学机电工程学院, 高性能复杂制造国家重点实验室, 湖南 长沙 410083
引用该论文

孔德键, 孙小燕, 董卓林, 胡友旺, 段吉安. 飞秒激光空间光束整形加工技术研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111416.

Dejian Kong, Xiaoyan Sun, Zhuolin Dong, Youwang Hu, Ji'an Duan. Progress in Femtosecond Laser Processing Technology Based on Space Beam Shaping[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111416.

参考文献

[1] Yang L, El-Tamer A, Hinze U, et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator[J]. Optics and Lasers in Engineering, 2015, 70: 26-32.

[2] Hu Y L, Chen Y H, Ma J Q, et al. High-efficiency fabrication of aspheric microlens arrays by holographic femtosecond laser-induced photopolymerization[J]. Applied Physics Letters, 2013, 103(14): 141112.

[3] Xu B, Du W Q, Li J W, et al. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication[J]. Scientific Reports, 2016, 6: 19989.

[4] Xu B, Hu W J, Du W Q, et al. Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication[J]. Optics Express, 2017, 25(14): 16739-16753.

[5] Obata K, Chichkov B N. Advanced femtosecond laser micro/nanostructuring using phase modulation technique[J]. International Journal of Optomechatronics, 2013, 7(4): 296-303.

[6] Qian D D, Yang L, Zhang Y C, et al. Flexible and rapid fabrication of silver microheaters with spatial-modulated multifoci by femtosecond laser multiphoton reduction[J]. Optics Letters, 2018, 43(21): 5335-5338.

[7] 周强. 飞秒激光制备单晶硅表面微结构研究[D]. 西安: 西安邮电大学, 2013: 39- 41.

    ZhouQ. Silicon surface micro-structure fabrication by femtosecond laser[D]. Xi'an: Xi'an University of Posts and Telecommunications, 2013: 39- 41.

[8] Paivasaari K, Silvennoinen M, Kaakkunen J, et al. Femtosecond laser processing and spatial light modulator[J]. Proceedings of SPIE, 2014, 8967: 89670F.

[9] Wang A D, Jiang L, Li X W, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 2015, 27(40): 6238-6243.

[10] Xu Z J, Jiang L, Li X W, et al. Flashablation of tunable and deep-subwavelength nanogap by using a spatially modulated femtosecond laser pulse for plasmonic application[J]. ACS Applied Nano Materials, 2019, 2(8): 4933-4941.

[11] Wang A D, Jiang L, Li X W, et al. Nanoscale material redistribution induced by spatially modulated femtosecond laser pulses for flexible high-efficiency surface patterning[J]. Optics Express, 2017, 25(25): 31431-31442.

[12] Cao X W, Lu Y M, Fan H, et al. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array[J]. Applied Optics, 2018, 57(32): 9604-9608.

[13] Cao X W, Chen Q D, Zhang L, et al. Single-pulse writing of a concave microlens array[J]. Optics Letters, 2018, 43(4): 831-834.

[14] 曹小文. 基于空间光调制器的飞秒激光加工微光学元件技术研究[D]. 长春: 吉林大学, 2019: 31- 63.

    Cao XW. Study of femtosecond laser fabrication of micro-optical components based on SLM[D]. Changchun: Jilin University, 2019: 31- 63.

[15] Du X, Zhang H, Cheng C, et al. Space-selective precipitation of ZnO crystals in glass by using high repetition rate femtosecond laser irradiation[J]. Optics Express, 2014, 22(15): 17908-17914.

[16] Du X, Sakakura M, Kurita T, et al. Square-shape distribution of ZnO crystals in glass by using a spatial light modulator[J]. Journal of Non-Crystalline Solids, 2016, 448: 79-82.

[17] Yang L, Li J W, Hu Y L, et al. Projection two-photon polymerization using a spatial light modulator[J]. Optics Communications, 2014, 331: 82-86.

[18] Hasegawa S, Shiono K, Hayasaki Y. Femtosecond laser processing with a holographic line-shaped beam[J]. Optics Express, 2015, 23(18): 23185-23194.

[19] Li B H, Jiang L, Li X W, et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping[J]. Advanced Optical Materials, 2018, 6(24): 1801021.

[20] 潘登, 李家文, 杨亮, 等. 水凝胶支架的飞秒激光全息加工[J]. 光学精密工程, 2017, 25(9): 2277-2282.

    Pan D, Li J W, Yang L, et al. Femtosecond laserholograpic fabrication of hydrogel cell scaffold[J]. Optics and Precision Engineering, 2017, 25(9): 2277-2282.

[21] Yang L, Ji S Y, Xie K N, et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells[J]. Optics Express, 2017, 25(7): 8144-8157.

[22] Ji S Y, Yang L, Hu Y L, et al. Dimension-controllable microtube arrays by dynamic holographic processing as 3D yeast culture scaffolds for asymmetrical growth regulation[J]. Small, 2017, 13(34): 1701190.

[23] Pan D, Cai Z, Ji S Y, et al. Microtubes with complex cross section fabricated by C-shaped Bessel laser beam for mimicking stomata that opens and closes rapidly[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36369-36376.

[24] Yu XM, ZhangM, Lei ST. Axial control of two-photon polymerization with femtosecond Bessel beam[C]∥Proceedings of ASME Conference on ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing, 2017.

[25] Yao Z L, Jiang L, Li X W, et al. Non-diffraction-length, tunable, Bessel-like beams generation by spatially shaping a femtosecond laser beam for high-aspect-ratio micro-hole drilling[J]. Optics Express, 2018, 26(17): 21960-21968.

[26] Yu X M. Trallero-Herrero C A, Lei S T. Materials processing with superposed Bessel beams[J]. Applied Surface Science, 2016, 360: 833-839.

[27] 刘毅. 飞秒激光可控弯曲结构加工新方法及其应用[D]. 北京: 北京理工大学, 2016: 52- 59.

    LiuY. New methods for femtosecond laser micromachining of controllable bending structures and application[D]. Beijing: Beijing Institute of Technology, 2016: 52- 59.

[28] Wang C W, Yang L, Hu Y L, et al. Femtosecond mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects[J]. ACS Nano, 2019, 13(4): 4667-4676.

[29] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 2017, 6(7): 57-64.

[30] Ni J C, Wang Z Y, Li Z Q, et al. Microoptics: multifurcate assembly of slanted micropillars fabricated by superposition of optical vortices and application in high-efficiency trapping microparticles[J]. Advanced Functional Materials, 2017, 27(45): 1701939.

[31] Li Y, Liu L P, Yang D, et al. Femtosecond laser nano/microfabrication via three-dimensional focal field engineering[J]. Proceedings of SPIE, 2017, 10092: 100920B.

[32] Liu L P, Yang D, Wan W P, et al. Fast fabrication of silver helical metamaterial with single-exposure femtosecond laser photoreduction[J]. Nanophotonics, 2019, 8(6): 1087-1093.

[33] 翟中生, 胡勇涛, 吕清花, 等. 基于空间光调制器的光束偏振态控制方法研究[J]. 激光与光电子学进展, 2016, 53(3): 032601.

    Zhai Z S, Hu Y T, Lü Q H, et al. Research on controlling the polarization state of laser beam with a spatial light modulator[J]. Laser & Optoelectronics Progress, 2016, 53(3): 032601.

[34] Allegre O J, Perrie W, Edwardson S P, et al. Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses[J]. Journal of Optics, 2012, 14(8): 085601.

[35] Meier M, Romano V, Feurer T. Material processing with pulsed radially and azimuthally polarized laser radiation[J]. Applied Physics A, 2007, 86(3): 329-334.

[36] 郭钊. 不同偏振光对FPC打孔加工技术研究[D]. 武汉: 湖北工业大学, 2017: 38- 49.

    GuoZ. Study on drilling technology of FPC with different polarized light[D]. Wuhan: Hubei University of Technology, 2017: 38- 49.

[37] 娄凯. 飞秒矢量光场空间调控及其在微纳加工中的应用[D]. 天津: 南开大学, 2013: 102- 121.

    LouK. Spatial control of femtoseond vector optical field and its application in micro/nano-fabrication[D]. Tianjin: Nankai University, 2013: 102- 121.

[38] Tang Y, Li J, Zhou T, et al. Dynamic beam shaping with polarization control at the image plane for material processing[J]. Procedia CIRP, 2018, 74: 581-584.

[39] Hasegawa S, Hayasaki Y. Polarization distribution control of parallel femtosecond pulses with spatial light modulators[J]. Optics Express, 2013, 21(11): 12987-12995.

[40] Hasegawa S, Hayasaki Y. Holographicvector wave femtosecond laser processing[J]. International Journal of Optomechatronics, 2014, 8(2): 73-88.

[41] Yoshio H, Hasegawa S. Holographic vector-wave femtosecond laser processing[J]. Proceedings of SPIE, 2016, 9764: 97641C.

[42] Wang C W, Su Y H, Wang J L, et al. Method for holographic femtosecond laser parallel processing using digital blazed grating and the divergent spherical wave[J]. Optical Engineering, 2015, 54(1): 016109.

[43] 苏亚辉, 汪金礼, 杨亮, 等. 飞秒激光全息并行加工中的多焦点均一性[J]. 光学精密工程, 2013, 21(8): 1936-1941.

    Su Y H, Wang J L, Yang L, et al. Uniformity of multi-foci for holographic femtosecond laser parallel fabrication[J]. Optics and Precision Engineering, 2013, 21(8): 1936-1941.

[44] 胡勇涛, 翟中生, 吕清花, 等. 基于空间光调制器的飞秒并行加工方法研究[J]. 应用光学, 2016, 37(2): 315-320.

    Hu Y T, Zhai Z S, Lü Q H, et al. Parallel processing with femtosecond laser using spatial light modulator[J]. Journal of Applied Optics, 2016, 37(2): 315-320.

[45] Hayasaki Y, Nishitani M, Takahashi H, et al. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing[J]. Applied Physics A, 2012, 107(2): 357-362.

[46] 张晨初. 基于空间光调制技术的高速高分辨飞秒激光加工[D]. 合肥: 中国科学技术大学, 2016: 85- 87.

    Zhang CC. High efficiency and high resolution femtosecond laser fabrication based on spatial light modulation technique[D]. Hefei: University of Science and Technology of China, 2016: 85- 87.

[47] 张骆, 翟中生, 吕清花, 等. 飞秒激光高效并行微孔加工技术研究[J]. 湖北工业大学学报, 2018, 33(4): 18-21.

    Zhang L, Zhai Z S, Lü Q H, et al. Research on efficient parallel femtosecond laser micro-drilling technique[J]. Journal of Hubei University of Technology, 2018, 33(4): 18-21.

[48] Zhang C C, Hu Y L, Du W Q, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, 2016, 6: 33281.

[49] 杨亮. 基于空间光调制器的飞秒激光并行加工技术研究[D]. 合肥: 中国科学技术大学, 2015: 39- 42.

    YangL. Research on parallel femtosecond laser fabrication technologies with spatial light modulator[D]. Hefei: University of Science and Technology of China, 2015: 39- 42.

[50] Kuang Z, Li J N, Edwardson S, et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator[J]. Optics and Lasers in Engineering, 2015, 70: 1-5.

[51] Liu D, Wang Y T, Zhai Z S, et al. Dynamic laser beam shaping for material processing using hybrid holograms[J]. Optics & Laser Technology, 2018, 102: 68-73.

[52] Li J N, Tang Y, Kuang Z, et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators[J]. Optics and Lasers in Engineering, 2019, 112: 59-67.

[53] Zhang C C, Hu Y L, Li J W, et al. An improved multi-exposure approach for high quality holographic femtosecond laser patterning[J]. Applied Physics Letters, 2014, 105(22): 221104.

孔德键, 孙小燕, 董卓林, 胡友旺, 段吉安. 飞秒激光空间光束整形加工技术研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111416. Dejian Kong, Xiaoyan Sun, Zhuolin Dong, Youwang Hu, Ji'an Duan. Progress in Femtosecond Laser Processing Technology Based on Space Beam Shaping[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111416.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!