激光技术, 2018, 42 (5): 673, 网络出版: 2018-09-11   

固体自喇曼黄光激光器研究进展

Research progress of solid-state self-Raman yellow lasers
作者单位
陆军工程大学石家庄校区 电子与光学工程系, 石家庄 050003
摘要
黄光激光作为激光研究领域的一大热点, 取得了丰硕的研究成果及广泛的应用。随着可同时作为激光晶体和喇曼晶体的自喇曼晶体的发展, 逐渐掀起了自喇曼黄光激光器的研究热潮。总结归纳了近10年来固体自喇曼黄光激光器的研究进展。按激光器的工作方式将其分成连续式和脉冲式激光器, 通过分类比较不同工作方式的激光器各自的优缺点, 明确了自喇曼黄光激光器今后的研究趋势是多方法并用。结构紧凑、低阈值等特点使其在生物医疗领域拥有巨大的应用潜力。以后的研究重点更偏向于高转换率、高稳定性、低成本及小型化。该研究报告为后续研究方向提供了参考。
Abstract
As one hot spot in the field of laser research, yellow lasers have achieved fruitful research results and extensive application. With the development of self-Raman crystal, which can be used as laser crystal and Raman crystal at the same time, the research upsurge of self-Raman yellow lasers has been set off gradually. The research progress of solid self-Raman yellow lasers in recent ten years is summarized. According to the way of laser operation, yellow lasers are divided into continuous lasers and pulsed lasers. By classifying and comparing the advantages and disadvantages of lasers with different working modes, it is clear that future research trend of self-Raman yellow laser would adopt multiple methods. The characteristics of compact structure, low threshold and so on will make yellow lasers have great potential in the field of biological medicine. Future research will focus on high conversion, high stability, low cost and miniaturization. The study provides the reference for the future research direction.
参考文献

[1] JONES K J. Progress in Na laser guide star adaptive optics and le-ssons learned[J].Proceedings of the SPIE, 2016,9950: 995011.

[2] SADICK N S, WEISS R. The utilization of a new yellow light laser (578nm) for the treatment of class I red telangiectasia of the lower extremities [J]. Dermatologic Surgery, 2002, 28(1): 21-25.

[3] KAPOOR V, KARPOV V, LINTON C, et al. Solid state yellow and orange lasers for flow cytometry[J]. Cytometry Part, 2008, A73(6): 570-577.

[4] YUAN Y Zh, LI B, GUO X Y. Laser diode pumped Nd∶YAG crystals frequency summing 589nm yellow laser[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(2): 710-712.

[5] LIU Y, LIU Z, CONG Z, et al. Quasi-continuous-wave 589nm radiation based on intracavity frequency-doubled Nd∶GGG/BaWO4, Raman laser[J]. Optics & Laser Technology, 2016, 81(28): 184-188.

[6] FENG Y, CALIA D B, HACKENBERG W, et al. Design of a narrow band 589nm laser by direct Raman shift in single mode fiber[J]. Proceedings of the SPIE, 2006,6272: 62724A.

[7] LEE A J, PASK H M, OMATSU T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics, 2007, B88(4): 539-544.

[8] WOODBURY E J, NG W K. Ruby laser operation in near IR[J]. Proceedings of the Institute of Radio Engineers, 1962, 50(11): 2367.

[9] PIPER J A, PASK H M. Crystalline Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 692-704.

[10] PASK H M. The design and operation of solid-state Raman lasers [J]. Progress in Quantum Electronics, 2003, 27(1): 3-56.

[11] INNOCENZI M E, YURA H T, FINCHER C L, et al. Thermal modeling of continuous-wave end-pumped solid-state lasers [J]. App-lied Physics Letters, 1990, 56(19): 1831-1833.

[12] KAMINSKII A A, UEDA K I, EICHLER H J, et al. Tetragonal vanadates YVO4 and GdVO4-new efficient χ(3)-materials for Raman lasers[J]. Optics Communications, 2001, 194(1): 201-206.

[13] CHEN Y F. Compact efficient all-solid-state eye-safe laser with self-frequency Raman conversion in a Nd∶YVO4 crystal.[J]. Optics Le-tters, 2004, 29(18): 2172-2174.

[14] CHEN Y F. Efficient subnanosecond diode-pumped passively Q-switched Nd∶YVO4 self-stimulated Raman laser [J]. Optics Le-tters, 2004, 29(11): 1251-1253.

[15] CHEN Y F. High-power diode-pumped actively Q-switched Nd∶YVO4 self-Raman laser: influence of dopant concentration[J]. Optics Letters, 2004, 29(16): 1915-1917.

[16] CHEN Y F. Efficient 1521nm Nd∶GdVO4 Raman laser [J]. Optics Letters, 2004, 29(22): 2632-2635.

[17] CHEN Y F. Compact efficient self-frequency Raman conversion in diode-pumped passively Q-switched Nd∶GdVO4 laser [J]. Applied Physics, 2004, B78(6): 685-687.

[18] JIANG P, DING X, LI B, et al. 9.80W and 0.54mJ actively Q-switched Nd∶YAG/Nd∶YVO4 hybrid gain intracavity Raman laser at 1176nm[J]. Optics Express, 2017, 25(4): 3387-3393.

[19] WU J, WU Sh F, ZHANG G, et al. The influence of stree birefringence on output power of Nd∶YVO4[J].Laser Technology, 2005, 29(6): 649-651(in Chinese).

[20] DONG W W, LI L, SHI P, et al. Thermal effect of Nd∶GdVO4 crystal end-pumped by fiber coupled diode laser.[J]. Laser Technology, 2009, 33(6): 633-637(in Chinese).

[21] DEKKER P, PASK H M, SPENCE D J, et al. Continuous-wave, intracavity doubled, self-Raman laser operation in Nd∶GdVO4 at 586.5nm[J]. Optics Express, 2007, 15(11): 7038-7046.

[22] LEE A J, PASK H M, OMATSU T, et al. All-solid-state continuous-wave yellow laser based on intracavity frequency-doubled self-Raman laser action[J]. Applied Physics, 2007, B88(4): 539-544.

[23] LEE A J, PASK H M, DEKKER P, et al. High efficiency, multi-watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd∶GdVO4[J]. Optics Express, 2008, 16(26): 21958-21963.

[24] LEE A J, PASK H M, SPENCE D J, et al. Efficient 5.3W CW laser at 559nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd∶GdVO4 laser.[J]. Optics Letters, 2010, 35(5): 682-684.

[25] L Y F, CHENG W B, XIONG Z, et al. Efficient CW laser at 559nm by intracavity sum-frequency mixing in a self-Raman Nd∶YVO4, laser under direct 880nm diode laser pumping[J]. Laser Physics Letters, 2010, 7(11): 787-789.

[26] L Y F, ZHANG X H, LI Sh T, et al. All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+∶LuVO4 crystal[J]. Optics Letters, 2010, 35(17): 2964-2966.

[27] LEE A J, SPENCE D J, PIPER J A, et al. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible[J]. Optics Express, 2010, 18(19): 20013-20018.

[28] XIA J,L Y F,ZHANG X H,et al. All-solid-state CW Nd∶KGd(WO4)2 self-Raman laser at 561nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths[J]. Laser Physics Letters, 2011, 8(1): 21-23.

[29] ZHU H Y, ZHANG G, DUAN Y M, et al. Compact continuous-wave Nd∶YVO4 laser with self-raman conversion and sum frequency generation[J]. Chinese Physics Letters, 2011, 28(5): 054202.

[30] ANDREW J L, HELEN M P, JAMES A P, et al. Efficient, miniature, CW yellow source based on an intracavity frequency-doubled Nd∶YVO4 self-Raman laser[J]. Optics Letters, 2011, 36(8): 1428-1430.

[31] LEE A J, PASK H M, PIPER J A, et al. 330mW CW yellow emi-ssion from miniature self-Raman laser based on direct HR-coated Nd∶YVO4 crystal[C]//Conference on Lasers and Electro-Optics/Pacific Rim. New York,USA: IEEE, 2011: 1250-1252.

[32] LI X L, PASK H M, LEE A J, et al. Miniature wavelength-selectable Raman laser: new insights for optimizing performance[J]. Optics Express, 2011, 19(25): 25623-25631.

[33] LIN J, PASK H M. Nd∶GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output[J]. Applied Physics, 2012, B108(1): 17-24.

[34] LI X, LEE A J, HUO Y, et al. Managing SRS competition in a miniature visible Nd∶YVO4/BaWO4 Raman laser[J]. Optics Express, 2012, 20(17): 19305-19312.

[35] TAN Y, FU X H, ZHAI P, et al. An efficient CW laser at 560nm by intracavity sum-frequency mixing in a self-Raman Nd∶LuVO4 laser[J]. Laser Physics, 2013, 23(4): 045806.

[36] DUAN Y M, ZHU H Y, FENG Zh R, et al. Laser diode end-pumped Nd∶YVO4 self-Raman laser at 559nm with sum-frequency mixing[J]. Chinese Journal of Lasers, 2013, 40(5): 0502002(in Chinese).

[37] KORES C C, PASK H M, NETO J J, et al. Continuous yellow-orange laser based on a diode-side-pumped Nd3+∶YVO4 self-Raman laser[C]// Advanced Solid State Lasers. Berlin,Germany: Optical Society of America, 2015: ATh2A.17 .

[38] DEMIDOVICH A A, GRABTCHIKOV A S, LISINETSKII V A, et al. Continuous-wave Raman generation in a diode-pumped Nd3+∶KGd(WO4)2 laser[J]. Optics Letters, 2005, 30(13): 1701-1703.

[39] SHANG C. Research on intra-cavity double frequency and Q-switched Nd∶YVO4 self-Raman laser at 588nm in-band pumped under 880nm[D].Tianjin: Tianjin University, 2014: 1-22(in Chin-ese).

[40] SU F F, ZHANG X Y, WANG Q P, et al. Diode pumped actively Q-switched Nd∶YVO4 self-Raman laser[J]. Journal of Physics, 2006, D39(10): 2090.

[41] DING Sh H, ZHANG X Y, WANG Q P, et al. Theoretical and experimental study on the self-Raman laser with Nd∶YVO4 crystal[J]. IEEE Journal of Quantum Electronics, 2006, D42(9): 927-933.

[42] DING Sh H, ZHANG X Y, WANG Q P, et al. Numerical modelling of passively Q-switched intracavity Raman lasers[J]. Journal of Physics, 2007, D40(9): 2736.

[43] DING Sh H, ZHANG X Y, WANG Q P, et al. Modeling of actively Q-switched intracavity Raman lasers[J]. IEEE Journal of Quantum Electronics, 2007, 43(8): 722-729.

[44] DING S, WANG P, QING X, et al. Analysis of actively Q-switched intracavity frequency-doubled solid-state yellow Raman lasers [J]. Applied Physics, 2011,B104(4): 819-827.

[45] LIU Y N. Theoretical and experimental study on LD pumped pa-ssively Q-switched intracavity frequency-doubled Raman yellow laser [D]. Yantai: Yantai University, 2012: 1-11(in Chinese).

[46] LIU B, ZHANG X Y, WANG Q P, et al. Diode-pumped intracavity frequency-double Nd∶YVO4 self-Raman yellow laser[J]. Acta Photonica Sinica, 2007, 36(10): 1777-1780(in Chinese).

[47] ZHU H Y, DUAN Y M, ZHANG G, et al. Yellow-light generation of 5.7W by intracavity doubling self-Raman laser of YVO4/Nd∶YVO4 composite[J]. Optics Letters, 2009, 34(18): 2763-2765.

[48] ZHU H Y, DUAN Y M, ZHANG G, et al. Efficient second harmonic generation of double-end diffusion-bonded Nd∶YVO4 self-Raman laser producing 7.9W yellow light[J]. Optics Express, 2009, 17(24): 21544-21550.

[49] OMATSU T, LEE A, PASK H M, et al. Passively Q-switched yellow laser formed by a self-Raman composite Nd∶YVO4 /YVO4, crystal[J]. Applied Physics, 2009, B97(4): 799-804.

[50] ZHU H Y, ZHANG G, ZHANG Y J, et al. LD end-pumped c-cut Nd∶YVO4 laser at 589nm generated by self-Raman conversion and frequency doubling[J]. Acta Physica Sinica, 2011, 60(9): 373-377(in Chinese).

[51] GUO Y Y, ZHANG L, HUANG G, et al. High-power diode-end-pumped composite YVO4/Nd∶YVO4/YVO4, self-Raman yellow laser[C]//Communications and Photonics Conference and Exhibition. New York,USA: IEEE, 2011: 1-6.

[52] DU Ch L, GUO Y Y, YU Y Q, et al. High power Q-switched intracavity sum-frequency generation and self-Raman laser at 559nm[J]. Optics & Laser Technology, 2013, 47(7): 43-46.

[53] SU F F, ZHANG X Y, WANG W T, et al. Diode-pumped intracavity yellow-green Raman laser at 560nm with sum-frequency-generation [J]. Optics & Laser Technology, 2015,66(6): 122-124.

[54] SHEN G, LI Z H, HAN M. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd∶GdVO4[J]. Optoelectronics Letters, 2016, 12(6): 430-432.

[55] SPENCE D E, KEAN P N, SIBBETT W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 1991, 16(1): 42-44.

[56] PENG J Y, ZHENG Y, ZHENG K, et al. Passively Q-switched mode locking in a compact Nd∶GdVO4/Cr∶YAG self-Raman laser[J]. Optics Communications, 2012, 285(24): 5334-5336.

[57] LI Z H, PENG J Y, YAO J Q, et al. Efficient self-stimulated Raman scattering with simultaneously self-mode-locking in a diode-pumped Nd∶GdVO4 laser[J]. Applied Optics, 2016, 55(32): 9000-9005.

[58] LI Z H, PENG J Y, YAO J Q, et al. The characteristics of Kerr-lens mode-locked self-Raman Nd∶YVO4, 1176nm laser[J]. Optics & Laser Technology, 2017, 89(1): 1-5.

伍锡山, 张鹏, 刘彬, 龙江雄. 固体自喇曼黄光激光器研究进展[J]. 激光技术, 2018, 42(5): 673. WU Xishan, ZHANG Peng, LIU Bin, LONG Jiangxiong. Research progress of solid-state self-Raman yellow lasers[J]. Laser Technology, 2018, 42(5): 673.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!