光子学报, 2016, 45 (5): 0501003, 网络出版: 2016-06-06   

海洋湍流中的量子高斯-谢尔光束偏振模型

Polarization Model of Quantized Gaussian Schell-model Fields in an Oceanic Turbulence
作者单位
1 江南大学 理学院,江苏 无锡 214000
2 江南大学 江苏省轻工光电工程技术研究中心,江苏 无锡 214000
摘要
研究湍流对海水光通信信道中传输的量子高斯-谢尔光束偏振度的影响.运用量子化场的惠更斯-菲涅尔原理, 构建湍流海水中量子化高斯谢尔光束的产生和湮灭算符. 基于海水折射率的空间功率谱,导出了量子高斯-谢尔光束的偏振度.数值结果表明:在参数给定条件下, 温度与盐度的比值从-4.5变化到-0.5时, 偏振度从0.75下降到0.20;接收光子数从20提高到50时, 偏振度从0.91提高到0.96;光源横向尺寸从0.02 m增大到0.12 m时, 偏振度从0.82提高到0.97;温度起伏对偏振度的影响高于盐度起伏的影响;提高发射光子数和增大发射孔径是扼制湍流干扰的有效方法.
Abstract
The effects of turbulence on the performance of the polarization degree of quantized Gaussian-Schell model beams propagating through oceanic optical communication channel were studied. The annihilation and creation operator of the linearly polarization quantized Gaussian Schell-beam were structured based on Huygens-fresnel principle of quantized field in oceanic water. An expression for the polarization properties of Gaussian Schell-model quantization fields propagating through the oceanic channel is derived based on the spatial power spectrum of the refractive index of ocean water. The numerical experimental results show that under given parameters, as the ratio of temperature and salinity contributions to the refractive index spectrum varies from -4.5 to -0.5, the polarization degree decreases from 0.75 to 0.21;when the number of receiving photon increases from 20 to 50, the polarization degree also increases from 0.91 to 0.96; when the source′s transverse size varies from 0.02 m to 0.12 m, the polarization degree changes from 0.82 to 0.97; the effects of temperature-induced polarization decrease is surpassing the effects of salinity fluctuations;increasing the launch photon number and the radius of the aperture are an effective way to mitigate turbulent disturbance.
参考文献

[1] HILL R. J. Optical propagation in turbulent water[J].Journal of the Optical Society of America, 1978, 68(8): 1067-1072.

[2] TANG H,YANG W,LI H. Detection performance of heterodyne lidar in non-kolmogorov turbulence[J]. Acta Photonica Sinica (in Chinese), 2015, 02: 80-85.

[3] LU W, LIU L, SUN J. Influence of temperature and salinity fluctuations on propagation behaviour of partially coherent beams in oceanic turbulence[J]. Journal of Optics A: Pure and Applied Optics, 2006, 8(12): 1052-1058.

[4] LU L, JI X, BAYKAL Y. Wave structure function and spatial coherence radius of plane and spherical waves propagating through oceanic turbulence[J].Optics Express, 2014, 22(22): 27112-27122.

[5] ATA Y, BAYKAL Y. Structure functions for optical wave propagation in underwater medium[J].Waves in Random and Complex Media, 2014, 24(2): 164-173.

[6] KOROTKOVA O, FARWELL N, SHCHEPAKINA E. Light scintillation in oceanic turbulence[J].Waves in Random and Complex Media, 2012, 22(2): 260-266.

[7] ATA Y, BAYKAL Y. Scintillations of optical plane and spherical waves in underwater turbulence[J]. Journal of the Optical Society of America A, 2014, 31(7): 1552-1556.

[8] ATA Y, BAYKAL Y. Field correlation of spherical wave in underwater turbulent medium[J].Applied Optics, 2014, 53(33): 7968-7971.

[9] TANG M, ZHAO D. Effects of astigmatism on spectra and polarization of aberrant electromagnetic non-uniformly correlated beams in turbulent ocean[J]. Applied Optics, 2014, 53(34): 8111-8115.

[10] KOROTKOVA O, FARWELL N. Effect of oceanic turbulence on polarization of stochastic beams[J].Optics Communications, 2011, 284(7): 1740-1746.

[11] ZHANG H, FU W. Changes in polarization properties of partially polarized, partially coherent vectorial cosh-Gaussian beams propagating in oceanic turbulence[J].Waves in Random and Complex Media, 2014, 24(4): 376-392.

[12] HUANG Y, HUANG P, WANG F, et al. The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite–Gaussian linear array beams[J]. Optics Communications, 2015, 336: 146-152.

[13] YOUSEFI M, KASHANI F. D, GOLMOHAMMADY S, et al. Analysing the behaviour of partially coherent divergent Gaussian beams propagating through oceanic turbulence[J].Journal of Modern Optics, 2014, 61(17): 1430-1441.

[14] SHCHEPAKINA E, FARWELL N, KOROTKOVA O. Spectral changes in stochastic light beams propagating in turbulent ocean[J]. Applied Physics B, 2011, 105(2): 415-420.

[15] TANG M, ZHAO D. Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean[J].Optics Communications, 2014, 312: 89-93.

[16] ZHOU Y, CHEN Q, ZHAO D. Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence[J].Applied Physics B, 2014, 114(4): 475-482.

[17] [18]GERCEKCIOGLU H. Bit error rate of focused Gaussian beams in weak oceanic turbulence[J].Journal of the Optical Society of America A, 2014, 31(9): 1963-1968.

    ZHOU Y, HUANG K, ZHAO D. Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence[J].Applied Physics B, 2012, 109(2): 289-294.

[18] YI X, LI Z, LIU Z. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J].Applied Optics, 2015, 54(6): 1273-1278.

[19] XU J, TANG M, ZHAO D. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence[J].Optics Communications, 2014, 331: 1-5.

[20] XU J, ZHAO D. Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence[J].Optics & Laser Technology, 2014, 57: 189-193.

[21] HUANG Y, ZHANG B, GAO Z, et al. Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence[J].Optics Express, 2014, 22(15): 17723-17734.

[22] YAO M, TOSELLI I, KOROTKOVA O. Propagation of electromagnetic stochastic beams in anisotropic turbulence[J].Optics Express, 2014, 22: 31608-31618.

[23] CHEN C, YANG H, TONG S, et al. Characterization of temporal pulse broadening for horizontal propagation in strong anisotropic atmospheric turbulence[J]. Optics Express, 2015, 23: 4814-4828.

[24] WANG Y, ZHANG Y, WANG J, et al. Degree of polarization for quantum light field propagation through non-Kolmogorov turbulence[J].Optics and Laser Technology, 2011, 43: 776-780.

[25] LAHIRI M, WOLF E. Cross-spectral density matrices of polarized light beams[J]. Optics Letters, 2009, 5: 557-9.

[26] LU W, LIU L, SUN J, Li D. The far-field spatial coherence of Gaussian Schell- mode beam in turbulence in terms of position vectors[J]. Optik, 2008, 119: 353-8.

[27] GRADSHTEYN I S, RYZHIK I M. Table of integrals, series, and products[J]. Academic Press, New York, 2007,337.

夏明超, 张逸新, 李烨, 武玉谦. 海洋湍流中的量子高斯-谢尔光束偏振模型[J]. 光子学报, 2016, 45(5): 0501003. XIA Ming-chao, ZHANG Yi-xin, LI Ye, WU Yu-qian. Polarization Model of Quantized Gaussian Schell-model Fields in an Oceanic Turbulence[J]. ACTA PHOTONICA SINICA, 2016, 45(5): 0501003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!