发光学报, 2020, 41 (6): 631, 网络出版: 2020-07-02   

硒化铅核壳量子点的合成与应用研究进展

PbSe Based Core/Shell Quantum Dots:from Colloidal Synthesis to Optoelectronic Application
作者单位
1 北京理工大学材料学院 工信部低维量子结构与器件重点实验室, 北京 100081
2 邯郸学院 化学化工与材料学院, 河北 邯郸 056005
引用该论文

张小丽, 王雷, 李冬, 邹炳锁, 钟海政. 硒化铅核壳量子点的合成与应用研究进展[J]. 发光学报, 2020, 41(6): 631.

ZHANG Xiao-li, WANG Lei, LI Dong, ZOU Bing-suo, ZHONG Hai-zheng. PbSe Based Core/Shell Quantum Dots:from Colloidal Synthesis to Optoelectronic Application[J]. Chinese Journal of Luminescence, 2020, 41(6): 631.

参考文献

[1] LU H P,CARROLL G M,NEALE N R,et al.. Infrared quantum dots: progress,challenges,and opportunities [J]. ACS Nano, 2019,13(2):939-953.

[2] ACKERMAN M M,TANG X,GUYOT-SIONNEST P. Fast and sensitive colloidal quantum dot mid-wave infrared photodetectors [J]. ACS Nano, 2018,12(7):7264-7271.

[3] SARGENT E H. Solar cells,photodetectors,and optical sources from infrared colloidal quantum dots [J]. Adv. Mater., 2008,20(20):3958-3964.

[4] 严金华,徐帅锋,沈旭辉,等. 基于PbSe量子点的全光纤光功率密度和温度传感器 [J]. 激光与光电子学进展, 2018,55(10):100602-1-4.

    YAN J H,XU S F,SHEN X H,et al.. All fiber-optic sensor measuring optical power density and temperature based on PbSe quantum dots [J]. Laser Optoelectron. Prog., 2018,55(10):100602-1-4. (in Chinese)

[5] LI M,LUO J T,FU C,et al.. PbSe quantum dots-based chemiresistors for room-temperature NO2 detection [J]. Sens. Actuators B: Chem., 2018,256:1045-1056.

[6] HEMATI T,ZHANG X T,WENG B B. Towards a low-cost on-chip mid-IR gas sensing solution:chemical synthesis of lead-salt photonic materials [C]. Proceedings of SPIE Smart Photonic and Optoelectronic Integrated Circuits ⅩⅫ,San Francisco,California,United States, 2020:1128418.

[7] RUDDY D A,JOHNSON J C,SMITH E R,et al.. Size and bandgap control in the solution-phase synthesis of near-infrared-emitting germanium nanocrystals [J]. ACS Nano, 2010,4(12):7459-7466.

[8] HENDRICKS M P,CAMPOS M P,CLEVELAND G T,et al.. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals [J]. Science, 2015,348(6240):1226-1230.

[9] YANOVER D,CˇAPEK R K,RUBIN-BRUSILOVSKI A,et al.. Small-sized PbSe/PbS core/shell colloidal quantum dots [J]. Chem. Mater., 2012,24(22):4417-4423.

[10] PIETRYGA J M,SCHALLER R D,WERDER D,et al.. Pushing the band gap envelope:mid-infrared emitting colloidal PbSe quantum dots [J]. J. Am. Chem. Soc., 2004,126(38):11752-11753.

[11] MURPHY J E,BEARD M C,NORMAN A G,et al.. PbTe colloidal nanocrystals:synthesis,characterization,and multiple exciton generation [J]. J. Am. Chem. Soc., 2006,128(10):3241-3247.

[12] TANG X,WU G F,LAI K W C. Plasmon resonance enhanced colloidal HgSe quantum dot filterless narrowband photodetectors for mid-wave infrared [J]. J. Mater. Chem. C, 2017,5(2):362-369.

[13] KEULEYAN S,LHUILLIER E,GUYOT-SIONNEST P. Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and Detection [J]. J. Am. Chem. Soc., 2011,133(41):16422-16424.

[14] SERGEEV A A,PAVLOV D V,KUCHMIZHAK A A,et al.. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays [J]. Light Sci. Appl., 2020,9:16-1-10.

[15] JIANG P,TIAN Z Q,ZHU C N,et al.. Emission-tunable near-infrared Ag2S quantum dots [J]. Chem. Mater., 2012,24(1):3-5.

[16] ZHU C N,JIANG P,ZHANG Z L,et al.. Ag2Se quantum dots with tunable emission in the second near-infrared window [J]. ACS Appl. Mater. Interfaces, 2013,5(4):1186-1189.

[17] YANG M,GUI R J,JIN H,et al.. Ag2Te quantum dots with compact surface coatings of multivalent polymers:ambient one-pot aqueous synthesis and the second near-infrared bioimaging [J]. Colloids Surf. B: Biointerfaces, 2015,126:115-120.

[18] SRIVASTAVA V,JANKE E M,DIROLL B T,et al.. Facile,economic and size-tunable synthesis of metal arsenide nanocrystals [J]. Chem. Mater., 2016,28(18):6797-6802.

[19] CHANG A Y,LIU W Y,TALAPIN D V,et al.. Carrier dynamics in highly quantum-confined,colloidal indium antimonide nanocrystals [J]. ACS Nano, 2014,8(8):8513-8519.

[20] HARRIS D K,ALLEN P M,HAN H S,et al.. Synthesis of cadmium arsenide quantum dots luminescent in the infrared [J]. J. Am. Chem. Soc., 2011,133(13):4676-4679.

[21] MIAO S D,HICKEY S G,RELLINGHAUS B,et al.. Synthesis and characterization of cadmium phosphide quantum dots emitting in the visible red to near-infrared [J]. J. Am. Chem. Soc., 2010,132(16):5613-5615.

[22] XU Y,AL-SALIM N,HODGKISS J M,et al.. Solution synthesis and optical properties of SnTe nanocrystals [J]. Cryst. Growth Des., 2011,11(7):2721-2723.

[23] 中华人民共和国生态环境部,国家市场监督管理总局. GB 15618-2018土壤环境质量 农用地土壤污染风险管控标准(试行) [S]. 北京:中国标准出版社, 2018.

    Ministry of Ecology and Environment of The Peoples Republic of China,State Administration for Market Regulation. GB 15618-2018 Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land [S]. Beijing:China Standard Press, 2018. (in Chinese)

[24] SHUKLOV I A,RAZUMOV V F. Lead chalcogenide quantum dots for photoelectric devices [J]. Russ. Chem. Rev., 2020,89(3):379-391.

[25] ABELSON A,QIAN C,SALK T,et al.. Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice [J]. Nat. Mater., 2020,19(1):49-55.

[26] SCHALLER R D,KLIMOV V I. High efficiency carrier multiplication in PbSe nanocrystals:implications for solar energy conversion [J]. Phys. Rev. Lett., 2004,92(18):186601-1-4.

[27] YU W W,FALKNER J C,SHIH B S,et al.. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent [J]. Chem. Mater., 2004,16(17):3318-3322.

[28] ALLAN G,DELERUE C. Role of impact ionization in multiple exciton generation in PbSe nanocrystals [J]. Phys. Rev. B, 2006,73(20):205423.

[29] DAI Q Q,WANG Y N,ZHANG Y,et al.. Stability study of PbSe semiconductor nanocrystals over concentration,size,atmosphere,and light exposure [J]. Langmuir, 2009,25(20):12320-12324.

[30] STOUWDAM J W,SHAN J N,VAN VEGGEL F C J M,et al.. Photostability of colloidal PbSe and PbSe/PbS core/shell nanocrystals in solution and in the solid state [J]. J. Phys. Chem. C, 2007,111(3):1086-1092.

[31] ZHANG J B,GAO J B,MILLER E M,et al.. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells [J]. ACS Nano, 2014,8(1):614-622.

[32] WOO J Y,KO J H,SONG J H,et al.. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide adlayers on PbSe (100) [J]. J. Am. Chem. Soc., 2014,136(25):8883-8886.

[33] LIAN L Y,XIA Y,ZHANG C W,et al.. In situ tuning the reactivity of selenium precursor to synthesize wide range size,ultralarge-scale,and ultrastable PbSe quantum dots [J]. Chem. Mater., 2018,30(3):982-989.

[34] ZHANG J B,GAO J B,CHURCH C P,et al.. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere [J]. Nano Lett., 2014,14(10):6010-6015.

[35] ZAIATS G,SHAPIRO A,YANOVER D,et al.. Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots [J]. J. Phys. Chem. Lett., 2015,6(13):2444-2448.

[36] ABEL K A,QIAO H J,YOUNG J F,et al.. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots [J]. J. Phys. Chem. Lett., 2010,1(15):2334-2338.

[37] ZAIATS G,YANOVER D,VAXENBURG R,et al.. PbSe/CdSe thin-shell colloidal quantum dots [J]. Z. Phys. Chem., 2015,229(1-2):3-21.

[38] PIETRYGA J M,WERDER D J,WILLIAMS D J,et al.. Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright,stable infrared emission [J]. J. Am. Chem. Soc., 2008,130(14):4879-4885.

[39] HANSON C J,HARTMANN N F,SINGH A,et al.. Giant PbSe/CdSe/CdSe quantum dots:crystal-structure-defined ultrastable near-infrared photoluminescence from single nanocrystals [J]. J. Am. Chem. Soc., 2017,139(32):11081-11088.

[40] LIFSHITZ E,BRUMER M,KIGEL A,et al.. Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications [J]. J. Phys. Chem. B, 2006,110(50):25356-25365.

[41] SARAVANAMOORTHY S N,PETER A J,LEE C W. Optical properties of type-Ⅰ PbSe/CdSe core/shell quantum dot [J]. Phys. B: Condens. Matter, 2015,466-467:101-106.

[42] GRODZIN'SKA D,PIETRA F,VAN HUIS M A,et al.. Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals [J]. J. Mater. Chem., 2011,21(31):11556-11565.

[43] GRODZIN'SKA D,EVERS W H,DORLAND R,et al.. Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots [J]. Small, 2011,7(24):3493-3501.

[44] BRUMER M,KIGEL A,AMIRAV L,et al.. PbSe/PbS and PbSe/PbSexS1-x core/shell nanocrystals [J]. Adv. Funct. Mater., 2005,15(17):1111-1116.

[45] SHAN J,VAN VEGGEL F C J M,RAUDSEPP M,et al.. Highly photo-stable type-Ⅰ PbSe/SnSe and PbSe/SnS colloidal core/shell quantum dots [J]. Tech. Briefs, 2006,3:125-128.

[46] SENTHIL A,REYMATIAS M V,ALAS G J,et al.. Synthesis and characterization of near-infrared PbSe/SnS colloidal core-shell quantum dots [C]. Proceedings of SPIE Colloidal Nanoparticles for Biomedical Applications XV,San Francisco,California,United States, 2020:1125508.

[47] ZHANG Y,DAI Q Q,LI X B,et al.. Formation of PbSe/CdSe core/shell nanocrystals for stable near-infrared high photoluminescence emission [J]. Nanoscale Res. Lett., 2010,5(8):1279-1283.

[48] MURRAY C B,NORRIS D J,BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE(E=sulfur,selenium,tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993,115(19):8706-8715.

[49] MURRAY C B,SUN S H,GASCHLER W,et al.. Colloidal synthesis of nanocrystals and nanocrystal superlattices [J]. IBM J. Res. Dev., 2001,45(1):47-56.

[50] CHO K S,TALAPIN D V,GASCHLER W,et al.. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J]. J. Am. Chem. Soc., 2005,127(19):7140-7147.

[51] KOH W K,BARTNIK A C,WISE F W,et al.. Synthesis of monodisperse PbSe nanorods:a case for oriented attachment [J]. J. Am. Chem. Soc., 2010,132(11):3909-3913.

[52] KOH W K,YOON Y,MURRAY C B. Investigating the phosphine chemistry of Se precursors for the synthesis of PbSe nanorods [J]. Chem. Mater., 2011,23(7):1825-1829.

[53] SON D H,HUGHES S M,YIN Y D,et al.. Cation exchange reactions in ionic nanocrystals [J]. Science, 2004,306(5698):1009-1012.

[54] GALLE T,KHOSHKHOO M S,MARTIN-GARCIA B,et al.. Colloidal PbSe nanoplatelets of varied thickness with tunable optical properties [J]. Chem. Mater., 2019,31(10):3803-3811.

[55] ZHANG C W,XIA Y,ZHANG Z M,et al.. Combination of cation exchange and quantized ostwald ripening for controlling size distribution of lead chalcogenide quantum dots [J]. Chem. Mater., 2017,29(8):3615-3622.

[56] CASAVOLA M,VAN HUIS M A,BALS S,et al.. Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry [J]. Chem. Mater., 2012,24(2):294-302.

[57] ZHANG Y,DAI Q Q,LI X B,et al.. Beneficial effect of tributylphosphine to the photoluminescence of PbSe and PbSe/CdSe nanocrystals [J]. J. Nanopart. Res., 2011,13(9):3721-3729.

[58] ZHANG Y,DAI Q Q,LI X B,et al.. PbSe/CdSe and PbSe/CdSe/ZnSe hierarchical nanocrystals and their photoluminescence [J]. Langmuir, 2011,27(15):9583-9587.

[59] SASHCHIUK A,LANGOF L,CHAIM R,et al.. Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals [J]. J. Cryst. Growth, 2002,240(3-4):431-438.

[60] YANOVER D,VAXENBURG R,TILCHIN J,et al.. Significance of small-sized PbSe/PbS core/shell colloidal quantum dots for optoelectronic applications [J]. J. Phys. Chem. C, 2014,118(30):17001-17009.

[61] KIGEL A,BRUMER M,SASHCHIUK A,et al.. PbSe/PbSexS1-x core-alloyed shell nanocrystals [J]. Mater. Sci. Eng. C, 2005,25(5-8):604-608.

[62] TALAPIN D V,YU H,SHEVCHENKO E V,et al.. Synthesis of colloidal PbSe/PbS core-shell nanowires and PbS/Au nanowire-nanocrystal heterostructures [J]. J. Phys. Chem. C, 2007,111(38):14049-14054.

[63] PAK C,WOO J Y,LEE K,et al.. Extending the limit of low-energy photocatalysis:dye reduction with PbSe/CdSe/CdS core/shell/shell nanocrystals of varying morphologies under infrared irradiation [J]. J. Phys. Chem. C, 2012,116(48):25407-25414.

[64] TU R Y,XIE Y,BERTONI G,et al.. Influence of the ion coordination number on cation exchange reactions with copper telluride nanocrystals [J]. J. Am. Chem. Soc., 2016,138(22):7082-7090.

[65] JEONG U,XIA Y N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids [J]. Angew. Chem. Int. Ed., 2005,44(20):3099-3103.

[66] ZHANG J T,DI Q M,LIU J,et al.. Heterovalent doping in colloidal semiconductor nanocrystals:cation-exchange-enabled new accesses to tuning dopant luminescence and electronic impurities [J]. J. Phys. Chem. Lett., 2017,8(19):4943-4953.

[67] DE GEYTER B,HENS Z. The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots [J]. Appl. Phys. Lett., 2010,97(16):161908-1-3.

[68] DE GEYTER B,JUSTO Y,MOREELS I,et al.. The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots [J]. ACS Nano, 2011,5(1):58-66.

[69] MISHRA N,MUKHERJEE B,XING G,et al.. Cation exchange synthesis of uniform PbSe/PbS core/shell tetra-pods and their use as near-infrared photodetectors [J]. Nanoscale, 2016,8(29):14203-14212.

[70] LI J J,WANG Y,GUO W Z,et al.. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction [J]. J. Am. Chem. Soc., 2003,125(41):12567-12575.

[71] YANOVER D,RUBIN-BRUSILOVSKI A,C`APEK R K,et al.. Temperature-dependent recombination processes in small-sized PbSe/PbS core/shell colloidal quantum dots [J]. Mater. Sci., 2014,20(2):141-143.

[72] GRINBOM G A,SARAF M,SAGUY C,et al.. Density of states in a single PbSe/PbS core-shell quantum dot measured by scanning tunneling spectroscopy [J]. Phys. Rev. B, 2010,81(24):245301.

[73] RUBIN-BRUSILOVSKI A,JANG Y,SHAPIRO A,et al.. Influence of interfacial strain on optical properties of PbSe/PbS colloidal quantum dots [J]. Chem. Mater., 2016,28(24):9056-9063.

[74] MAIKOV G I,KIGEL A,SASHCHIUK A,et al.. Emission processes in colloidal PbSe/PbS core-shell quantum dots [J]. IOP Conf. Ser.:Mater. Sci. Eng., 2009,6(1):012027-1-6.

[75] CUI D H,XU J,PARADEE G,et al.. Developing PbSe/PbS core-shell nanocrystals quantum dots toward their potential heterojunction applications [J]. J. Exp. Nanosci., 2007,2(1-2):13-21.

[76] LEE D C,ROBEL I,PIETRYGA J M,et al.. Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes [J]. J. Am. Chem. Soc., 2010,132(29):9960-9962.

[77] SEMONIN O E,LUTHER J M,CHOI S,et al.. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell [J]. Science, 2011,334(6063):1530-1533.

[78] 张梁,孙强,朱阳阳,等. PbSe量子点调控的聚合物太阳能电池性能 [J]. 发光学报, 2019,40(10):1267-1273.

    ZHANG L,SUN Q,ZHU Y Y,et al.. Improving performance of polymer solar cells by regulating PbSe quantum dots [J]. Chin. J. Lumin., 2019,40(10):1267-1273. (in Chinese)

[79] ZHANG Z L,CHEN Z H,ZHANG J B,et al.. Significant improvement in the performance of PbSe quantum dot solar cell by introducing a CsPbBr3 perovskite colloidal nanocrystal back layer [J]. Adv. Energy Mater., 2017,7(5):1601773.

[80] MA W L,SWISHER S L,EWERS T,et al.. Photovoltaic performance of ultrasmall PbSe quantum dots [J]. ACS Nano, 2011,5(10):8140-8147.

[81] LESCHKIES K S,BEATTY T J,KANG M S,et al.. Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films [J]. ACS Nano, 2009,3(11):3638-3648.

[82] LI J Z,XU J,ZHAO L X,et al.. Preparation and characterization of CdSe and PbSe nanoparticles via aqueous solution for nanoparticle-based solar cells [J]. Mater. Res. Bull., 2013,48(4):1560-1568.

[83] CHOI J J,LIM Y F,SANTIAGO-BERRIOS M B,et al.. PbSe nanocrystal excitonic solar cells [J]. Nano Lett., 2009,9(11):3749-3755.

[84] ETGAR L,YANOVER D,C`APEK R K,et al.. Core/shell PbSe/PbS QDs TiO2 heterojunction solar cell [J]. Adv. Funct. Mater., 2013,23(21):2736-2741.

[85] CHOI H,SONG J H,JANG J,et al.. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells:short circuit current enhancement without the loss of open circuit voltage by shell thickness control [J]. Nanoscale, 2015,7(41):17473-17481.

[86] WANG T Y,WANG P,WANG H L,et al.. Solar cells of the inorganic materials based on PbSe/CdSe core/shell nanocrystals [J]. Appl. Mech. Mater., 2015,737:119-122.

[87] WANG P,WANG T Y,WANG H L,et al.. Based on graphene electrodes PbSe/CdSe core-shell quantum dots battery [J]. Appl. Mech. Mater., 2015,737:88-91.

[88] SARASQUETA G,CHOUDHURY K R,SO F. Effect of solvent treatment on solution-processed colloidal PbSe nanocrystal infrared photodetectors [J]. Chem. Mater., 2010,22(11):3496-3501.

[89] FU C J,WANG H W,SONG T J,et al.. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector [J]. Nanotechnology, 2016,27(6):065201.

[90] YU Y,ZHANG Y T,ZHANG Z,et al.. Broadband phototransistor based on CH3NH3PbI3 perovskite and PbSe quantum dot heterojunction [J]. J. Phys. Chem. Lett., 2017,8(2):445-451.

[91] DOLATYARI M,ROSTAMI A,MATHUR S,et al.. Trap engineering in solution processed PbSe quantum dots for high-speed MID-infrared photodetectors [J]. J. Mater. Chem. C, 2019,7(19):5658-5669.

[92] SARASQUETA G,CHOUDHURY K R,SUBBIAH J,et al.. Organic and inorganic blocking layers for solution-processed colloidal PbSe nanocrystal infrared photodetectors [J]. Adv. Funct. Mater., 2011,21(1):167-171.

[93] ZHU T,YANG Y R,ZHENG L Y,et al.. Solution-processed flexible broadband photodetectors with solution-processed transparent polymeric electrode [J]. Adv. Funct. Mater., 2020,30(15):1909487.

[94] 程成,魏凯华. PbSe量子点光纤激光器的数值模拟 [J]. 红外与激光工程, 2010,39(5):815-818.

    CHENG C,WEI K H. Numerical simulation of PbSe quantum-dot-doped fiber laser [J]. Infrared Laser Eng., 2010,39(5):815-818. (in Chinese)

[95] CHENG C,BO J F,YAN J H,et al.. Experimental realization of a PbSe-quantum-dot doped fiber laser [J]. IEEE Photonics Technol. Lett., 2013,25(6):572-575.

[96] SARAVANAMOORTHY S N,PETER A J,LEE C W. Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications [J]. Chem. Phys., 2017,483-484:1-6.

[97] KIGEL A,BRUMER M,SASHCHIUK A,et al.. Synthesis,characterization and the use of PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystals as saturable absorbers in passively switched near infra-red lasers [C]. Proceedings of SPIE Physical Chemistry of Interfaces and Nanomaterials,San Diego,California,United States, 2005:59290F.

[98] BRUMER M,SIROTA M,KIGEL A,et al.. Nanocrystals of PbSe core,PbSe/PbS,and PbSe/PbSexS1-x core/shell as saturable absorbers in passively Q-switched near-infrared lasers [J]. Appl. Opt., 2006,45(28):7488-7497.

[99] KIM W D,LEE S,PAK C,et al.. Metal tips on pyramid-shaped PbSe/CdSe/CdS heterostructure nanocrystal photocatalysts:study of ostwald ripening and core/shell formation [J]. Chem. Commun., 2014,50(14):1719-1721.

[100] 邢笑雪,王宪伟,秦宏伍,等. PbSe量子点近红外光源的CH4气体检测 [J]. 中国光学, 2018,11(4):662-668.

    XING X X,WANG X W,QIN H W,et al.. CH4 detection based on near-infrared luminescence of PbSe quantum dots [J]. Chin. Opt., 2018,11(4):662-668. (in Chinese)

[101] YU S Y,YAN L,ZHANG T Q,et al.. Gas detection based on quantum dot LEDs utilizing differential optical absorption spectroscopy [J]. RSC Adv., 2017,7(48):30096-30100.

[102] XING X Y,LIU C,SHANG W W,et al.. Liquid-type structure near-infrared light-emitting diodes based on PbSe quantum dots for acetylene gas detection [J]. Infrared Phys. Technol., 2019,98:315-322.

张小丽, 王雷, 李冬, 邹炳锁, 钟海政. 硒化铅核壳量子点的合成与应用研究进展[J]. 发光学报, 2020, 41(6): 631. ZHANG Xiao-li, WANG Lei, LI Dong, ZOU Bing-suo, ZHONG Hai-zheng. PbSe Based Core/Shell Quantum Dots:from Colloidal Synthesis to Optoelectronic Application[J]. Chinese Journal of Luminescence, 2020, 41(6): 631.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!