光子学报, 2020, 49 (5): 0506003, 网络出版: 2020-06-04   

基于无芯光纤强度调制型液位传感器的设计与性能

Design and Performance of Intensity Modulated Liquid-level Sensor Based on No-core Optical Fibers
作者单位
1 重庆理工大学 理学院, 重庆 400054
2 绿色能源材料技术与系统重庆市重点实验室, 重庆 400054
摘要
利用强度调制型光纤传感器容易解调的优势, 提出了一种强度调制型光纤液位传感器.传感器由三根无芯光纤组成, 其中, 无芯光纤1与无芯光纤2串联构成测量臂, 无芯光纤3构成参考臂.仿 真分析得出, 无芯光纤长度每缩短1 mm, 透射峰波长增加25.46 nm.在0~50 mm小液位范围内, 实验测得传感器在水、5% NaCl、10% NaCl和15% NaCl水溶液四种液体环境中的液位灵敏度分别为0.069 5 dB/mm、0.074 73 dB/mm、0.077 49 dB/mm及0.082 71 dB/mm, 线性度分别为0.998 25、0.998 49、0.988 11及0.995 13, 线性度较高.该传感器可较好地消除光源光功率波动与环境温度变化带来 的影响, 重复性较好, 在石油化工领域有一定的应用潜力.
Abstract
In order to take advantage of the ease of demodulation of the intensity-modulated fiber-optic sensor, an intensity-modulated liquid level sensor is proposed. The sensor consists of three no-core optical fibers. Among them, the no-core fiber 1 and no-core fiber 2 are cascaded to form a measuring arm, and no-core fiber 3 constitutes a reference arm. The simulation analysis show that if the length of no-core fiber is shortened by 1 mm, the transmission peak wavelength is increased by 25.46 nm. In the 0~50 mm liquid level range, the measured sensitivities of the sensor in the liquid environments, namely water, 5% NaCl, 10% NaCl and 15% NaCl aqueous solutions, are 0.069 5 dB/mm, 0.074 73 dB/mm, 0.077 49 dB/mm and 0.082 71 dB/mm, respectively. The linearities of the sensor are 0.998 25, 0.998 49, 0.988 11 and 0.995 13, respectively. The proposed sensor can eliminate the influence of optical power fluctuation and ambient temperature variation with good repetition, and maybe has a potential application in the petrochemical industry.
参考文献

[1] HOU Le-yi, MAO Bang-ning, WANG Jian-feng, et al. Temperature characteristics of cascaded Fabry-Pérot interferometer sensors based on vernier effect[J]. Acta Photonica Sinica, 2019, 48(9): 0906002.侯乐义, 毛邦宁, 王剑锋, 等. 基于游标效应的级联法布里-珀罗传感器温度特性[J].光子学报, 2019, 48(9): 0906002.

[2] PANG Shuo, LUO Zheng-chun, WANG Zhong-min, et al. Interferometric optical fiber water level sensing system for oceanic monitoring applications[J]. Acta Photonica Sinica, 2019, 48(9): 0906003.庞铄, 罗政纯, 王忠民, 等. 用于海洋水位监测的干涉式光纤水位传感系统[J].光子学报, 2019, 48(9): 0906003.

[3] FU Hong-yan, SHU Xue-wen, ZHANG A-ping, et al. Implementation and characterization of liquid-level sensor based on a long-period fiber grating Mach-Zehnder interferometer[J]. IEEE Sensors Journal, 2011, 11(11): 2878-2882.

[4] GU Bo-bo, QI Wen-liang, ZHOU Yan-yan, et al. Reflective liquid level sensor based on modes conversion in thin-core fiber incorporating titled fiber Bragg grating[J] . Optics Express, 2014, 22(10): 11834-11839.

[5] NATH P, DATTA P, SARMA K.All fiber-optic sensor for liquid level measurement[J]. Microwave and Optical Technology Letters, 2008, 50(7): 1982-1984.

[6] GE Jun-feng, XIN Cheng, GUI Kan, et al. Oblique end face coupling optical fiber sensor for point fuel level measurement[J]. Sensors and Actuators A: Physical, 2019, 297: 111505.

[7] TENG Chuan-xin, LIU Hou-quan, DENG Hong-chang,et al. Liquid level sensor based on a V-groove structure plastic optical fiber[J]. Sensors, 2018, 18(9): 3111.

[8] ZHANG Yan-jun, ZHANG Ying-zi, HOU Yu-long, et al. An optical fiber liquid level sensor based on side coupling induction technology[J]. Journal of Sensors, 2018: 2953807.

[9] ZHANG Ying-zi, HOU Yu-long, ZHANG Yan-jun, et al. Enhancement of a continuous liquid level sensor based on a macro-bend polymer optical fiber coupler[J]. IEEE Photonics Journal, 2018, 10(1): 1-6.

[10] LIU Jia, LI Da-quan, LIU Wen-yi, et al. Study on continuous liquid level sensor based on polymer optical fiber FTIR effect[J]. Piezoelectrics & Acoustooptics, 2016, 38(6): 897-901.刘佳, 李大全, 刘文怡,等. 基于光纤FTIR效应的连续式液位传感器研究[J]. 压电与声光, 2016, 38(6): 897-901.

[11] LIU Yan, LI Yang, YAN Xiao-jun, et al. High refractive index liquid level measurement via coreless multimode fiber[J]. IEEE Photonics Technology Letters, 2015, 27 (20): 2111-2114.

[12] OLIVEIRA R, ARISTILDE S, OSRIO J H, et al. Intensity liquid level sensor based on multimode interference and fiber Bragg grating[J]. Measurement Science and Technology, 2016, 27(12): 125104.

[13] ZHANG Yu, ZHU Xiao-song, SHI Yi-wei. Hollow optical fiber surface plasmon resonance sensor based on lightintensity detection[J]. Acta Optica Sinica, 2017, 37(6): 0606001.张玙, 朱晓松, 石艺尉. 光强检测型空芯光纤表面等离子体共振传感器[J]. 光学学报, 2017, 37(6): 0606001.

[14] XU Wei, SHI Jia, YANG Xian-chao, et al. Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation[J]. Sensors, 2017, 17(10): 2240.

[15] ZHENG Jing-jing, LI Jing, NING Ti-gang, et al. Improved self-imaging for multi-mode optical fiber involving cladding refractive index[J]. Optics Communications, 2013, 311: 350-353.

[16] SHI Guan-nan. Tunable passive mode-locked all-fiber laser based on multi-mode interference effect[D].Tianjin: Tianjin University, 2018.

[17] ANTONIO-LOPEZ J E, SANCHEZ-MONDRAGON J J, LIKAMWA P, et al. Fiber-optic sensor for liquid level measurement[J]. Optics Letters, 2011, 36(17): 3425-3427.

[18] SHI Jia, WANG Yu-yue, XU De-gang, et al. Temperature self-compensation high-resolution refractive index sensor based on fiber ring laser[J]. IEEE Photonics Technology Letters, 2017, 29(20): 1743-1746.

冯德玖, 陈翠, 冯文林, 李邦兴. 基于无芯光纤强度调制型液位传感器的设计与性能[J]. 光子学报, 2020, 49(5): 0506003. FENG De-jiu, CHEN Cui, FENG Wen-lin, LI Bang-xing. Design and Performance of Intensity Modulated Liquid-level Sensor Based on No-core Optical Fibers[J]. ACTA PHOTONICA SINICA, 2020, 49(5): 0506003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!