激光技术, 2019, 43 (6): 763, 网络出版: 2019-12-08   

基于FPGA红外成像光谱数据处理系统研究

Research of data processing systems for infrared imaging spectrometer based on FPGA
作者单位
长春理工大学光电信息学院, 长春 130114
摘要
目标实时探测是红外成像光谱系统的重要研究方向之一。为了同时保障系统数据处理速度与光谱复现精度, 研究了一种高速光谱反演系统。该系统由现场可编程门阵列(FPGA)芯片实现, 对干涉条纹图像进行非均匀性校正、加窗切趾, 从而抑制干涉条纹数据中的直流噪声及杂散噪声; 再经快速傅里叶变换、相位校正、光谱标定最终获得光谱分布。结果表明, 本算法对杂散噪声具有很好的抑制效果, 非均匀性系数由11.23%降低至1.05%; 对光谱的反演实验中本系统获得的光谱分布形态与MATLAB结果基本一致, 且在光谱细节部分的准确度更好一些; 系统采用流水线工作方式缩短了数据处理周期, 并且基于FPGA芯片的开发模块具有更强的兼容性。该系统具有处理速度快、体积小、稳定性高、兼容性强等优点, 在红外目标实时探测领域具有很好的应用前景。
Abstract
Real-time target detection is one of the important research directions of infrared imaging spectral systems. In order to guarantee the data processing speed and spectral reproducing accuracy of the system at the same time, a high-speed spectral inversion system was studied. The system was implemented by a field-programmable gate array (FPGA) chip. Non-uniformity correction and windowed toe-cutting were applied to the interference fringe image to suppress the direct current noise and spurious noise in interference fringe data. Then spectral distribution was obtained after fast Fourier transform, phase correction and spectrum calibration. The results show that the algorithm has a good suppression effect on spurious noise. Coefficient of inhomogeneity decreases from 11.23% to 1.05%. In the experiment of spectral inversion, the spectral distribution obtained by this system is basically consistent with that obtained by MATLAB. The accuracy of spectral details is better. The system uses pipeline mode to shorten the data processing cycle. And the development module based on FPGA chip has better compatibility. The system has the advantages of fast processing speed, small volume, high stability and good compatibility. It has good application prospect in the field of infrared target real-time detection.
参考文献

[1] L M, CHEN Ch, WANG Y D. High-speed optical signal acquisition system for trace gases detection in mid-infrared absorption spectrum [J]. Laser Journal, 2016, 40(2): 153-156(in Chinese).

[2] ZHOU Zh J, ZHANG Y G, FAN B. Design of interference signal double ADC acquisition system based on FPGA[J]. Electronic Mea-surement Technology, 2016, 12(4): 123-128(in Chinese).

[3] MANZARDO O, HERZIG H P, CULDIMANN B, et al. New design for an integrated fourier transform spectrometer[J].Proceedings of the SPIE,2000,4178:310-319.

[4] DAI J, TANG X Ch, GAO Zh F. Design and implementation of an infrared image processing system under sea and sky background[J]. Infrared Technology, 2016, 38(2): 121-125(in Chinese).

[5] ROSSI A, DIANI M, CORSINI G. Bilateral filter-based adaptive non-uniformity correction for infrared focal-plane array systems[J]. Optical Engineering, 2010, 49(5): 057003.

[6] KAZUMASA T, HIROTAKA A, KATSUNARI O. Correction for phase-shift deviation in a complex Fourier transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme[J]. Optics Letters, 2011, 36(7): 1044-1046.

[7] ZHANG D L, SHEN X L, SONG Y K, et al. Design and implementation of large FFT convolution on heterogeneous multicore programma- ble system[J]. Application of Electronic Technique, 2017,43(3): 16-20(in Chinese).

[8] LI Ch, WAN X X, XIE W, et al. Color filter design method for multi-channel spectral acquisition system[J]. Journal of Applied Optics, 2016, 37(5): 639-643(in Chinese).

[9] MILES A J, WIEN F, LEES J G. Calibration and standardization of synchrotron radiation and conventional circular dichroism spectrometers. Part 2: Factors affecting magnitude and wavelength[J]. Spectroscopy, 2005, 19(1): 43-51.

[10] WANG W, LU Y H, LU F, et al. Design of moving mirror control system of Fourier transform infrared spectrometer based on DSP[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 8-16(in Chinese).

[11] HE G, BAI P, PENG W D, et al. The design and realization for slip correlation capture algorithmic of a sort of communication systems based on FPGA IP core[J].Journal of Jiangxi Normal University(Natural Science Edition), 2011, 35(2): 151-154(in Chinese).

[12] GUO J, LU Q P, GAO H Zh, et al. Design of noninvasive blood constituent spectrum data acquisition system based on FPGA[J]. Spectroscopy and Spectral Analysis, 2016, 36(9): 2991-2996(in Chinese).

[13] HE M, ZHANG T Y, WANG Y D, et al. Non-uniformity correction algorithm based on wavelet transform histogram normalization[J]. Infrared and Laser Engineering, 2014, 42(12): 3481-3485(in Ch-inese).

[14] YING Sh M, YING X F, CHEN H B, et al. Study on nonuniformity online calibration and correction of fourier transform infrared imaging spectrometer[J]. Infrared Technology, 2014, 36(7): 567-572(in Chinese).

[15] DU Sh S, WANG Y M, TAO R. Multiple beam interferential spectral imaging technology[J]. Acta Optica Sinica, 2013, 33(8): 830003 (in Chinese).

[16] SUN X L, SUN H F, ZHAO Sh P. Design and implementation of high-speed spectrum data processing system based on FPGA[J]. Chinese Journal of Sensors and Actuators, 2018, 31(2): 319-322(in Chinese).

[17] LIU J P, XUE H R. High-speed spectrum acquisition and processing system based on FPGA [J]. Infrared Technology, 2018, 40(11):1042-1046(in Chinese).

[18] YING Sh M, LIANG Y B, ZHU J M, et al. Study on real-time spectrum recovery system on a FPGA chip for Fourier transform infrared imaging spectrometer[J]. Infrared and Laser Engineering, 2015, 44(12): 3580-3586(in Chinese).

孙颖馨. 基于FPGA红外成像光谱数据处理系统研究[J]. 激光技术, 2019, 43(6): 763. SUN Yingxin. Research of data processing systems for infrared imaging spectrometer based on FPGA[J]. Laser Technology, 2019, 43(6): 763.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!