发光学报, 2017, 38 (7): 930, 网络出版: 2017-07-05   

InAs/AlSb/GaSb量子阱中的双色光吸收

Two Color Optical Absorption in InAs/AlSb/GaSb Quantum Well System
作者单位
皖西学院 电气与光电工程学院, 安徽 六安 237012
摘要
为了降低噪声对InAs/GaSb量子阱作为双色电探测器性能的影响, 设计性能优良的光电探测器, 在InAs/GaSb量子阱中加入AlSb夹层, 以减少电子和空穴在界面处的复合, 从而抑制由于电子和空穴复合引起的噪声。首先应用转移矩阵方法求解薛定谔方程得到量子阱中电子和空穴的能级和波函数, 研究AlSb夹层对电子和空穴波函数的影响。应用平衡方程方法求解外加光场条件下的玻尔兹曼方程, 研究所有电子和空穴跃迁通道对光吸收系数的贡献, 重点研究了AlSb夹层厚度对光吸收系数的影响。结果表明: 基于InAs/GaSb的量子阱体系可以实现双色光吸收, 加入AlSb夹层可以有效抑制电子和空穴在界面处的隧穿, 从而降低复合噪声, 同时AlSb夹层的加入也对吸收峰有影响。AlSb夹层的厚度达到2 nm即可有效降低电子和空穴复合噪声, 双色光吸收峰在中远红外波段, 为该量子阱作为性能良好的中远红外光电探测器提供理论支撑。
Abstract
In order to suppress the noise and improve the performance of the detector, AlSb caplayer was inserted between InAs layer and GaSb layer. The transfer matrix method was employed to solve the Schrdinger equation to get the wavefunctions and subband energies for electron and hole. The optical absorption coefficients were obtained by solving the Boltzmann equation with the balance equation method. The effects of AlSb caplayer on the intersubband optical transition were investigated in detail. The noise induced by the electron-hole combination can be suppressed efficiently when the width of AlSb caplayer reaches up to 1 nm. Two peaks of the optical absorption are observed at the mid-and-far infrared bandwidth indicating that InAs/AlSb/GaSb based type Ⅱquantum well system can be used as mid-and-far infrared photoelectric detector.
参考文献

[1] 余连杰, 邓功荣, 苏玉辉. InAs/GaSbⅡ类超晶格与HgCdTe红外探测器的比较研究 [J]. 红外技术, 2012, 34(12): 683-689.

    YU L J, DENG G R, SU Y H. Comparison of type Ⅱ InAs/GaSb superlattices and HgCdTe infrared detectors [J]. Infrared Technol., 2012, 34(12): 683-689. (in Chinese)

[2] ZHANG Z K, LIU Y, LIU J G, et al.. Packaging investigation of optoelectronic devices [J]. J. Semicond., 2015, 36(10): 101001-1-6.

[3] CHEN H D, ZHANG Z, HUANG B J, et al.. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits [J]. J. Semicond., 2015, 36(12): 121001-1-13.

[4] MOHSENI H, RAZEGHI M, BROWN G J, et al.. High-performance InAs/GaSb superlattice photodiodes for the very long wavelength infrared range [J]. Appl. Phys. Lett., 2001, 78(15): 2107-2109.

[5] WEI Y, GIN A, RAZEGHI M, et al.. Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications [J]. Appl. Phys. Lett., 2002, 80(18): 3262-3264.

[6] NORTON P. Third-generation sensors for night vision [J]. Opto Electron. Rev., 2006, 14(1): 1-10.

[7] WALPITA L M. Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix [J]. J. Opt. Soc. Am. A, 1985, 2(4): 595-602.

[8] GHATAK A K, THYAGARAJAN K, SHENOY M R. A novel numerical technique for solving the one-dimensional Schroedinger equation using matrix approach-application to quantum well structures [J]. IEEE J. Quant. Electron., 1988, 24(8): 1524-1531.

[9] JONSSON B, ENG S T. Solving the Schrodinger equation in arbitrary quantum-well potential profiles using the transfer matrix method [J]. IEEE J. Quant. Electron., 1990, 26(11): 2025-2035.

[10] CAO W H. Analytical formulas for carrier density and Fermi energy in semiconductors with a tight-binding band[J]. J. Semicond., 2015, 36(4): 042002-1-4.

[11] SUTTON A P, FINNIS M W, PETTIFOR D G, et al.. The tight-binding bond model [J]. J. Phys. C: Solid State Phys., 1988, 21(1): 35-66.

[12] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys [J]. J. Appl. Phys., 2001, 89(11): 5815-5875.

[13] GLADYSIEWICZ M, KUDRAWIEC R, MILOSZEWSKI J M, et al.. Band structure and the optical gain of GaInNAs/GaAs quantum wells modeled within 10-band and 8-band kp model [J]. J. Appl. Phys., 2013, 113(6): 063514-1-11.

[14] LEI X L, LIU S Y. Nonlinear free-carrier absorption of intense THz radiation in semiconductors [J]. J. Phys. Condens. Matt., 2000, 12(21): 4655-4664.

[15] YANG C H, CHEN Y Y, JIANG J J, et al.. The optical conductivity in double and three layer graphene systems [J]. Solid State Commun., 2016, 227: 23-27.

[16] CHEN J, ZENG W Y. Coupling effect of quantum wells on band structure [J]. J. Semicond., 2015, 36(10): 102005-1-4.

[17] NICHELE F, KJAERGAARD M, SUOMINEN H J, et al.. Giant spin-orbit splitting in inverted InAs/GaSb double quantum wells [J]. Phys. Rev. Lett., 2017, 118(1): 016801.

[18] KNEZ I, DU R R, SULLIVAN G. Evidence for helical edge modes in inverted InAs/GaSb quantum wells [J]. Phys. Rev. Lett., 2011, 107(13): 136603.

张仲义, 秦素英, 魏相飞. InAs/AlSb/GaSb量子阱中的双色光吸收[J]. 发光学报, 2017, 38(7): 930. ZHANG Zhong-yi, QIN Su-ying, WEI Xiang-fei. Two Color Optical Absorption in InAs/AlSb/GaSb Quantum Well System[J]. Chinese Journal of Luminescence, 2017, 38(7): 930.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!