强激光与粒子束, 2015, 27 (5): 051008, 网络出版: 2015-05-20  

新型缓变锥型PCF结构接口耦合损耗特性

Coupling loss characteristics of the novel tapered photonic crystal fiber interface
作者单位
哈尔滨工程大学 自动化学院, 哈尔滨 150001
摘要
提出一种新型的缓变锥型光纤接口器件。该接口器件是一个长度为150 mm左右的缓变锥型光子晶体光纤。利用有限元方法对模场直径差别较大的不同光纤进行拼接时的损耗问题进行研究。研究结果表明: 在模场直径分别为9 μm和10.4 μm的光纤之间加入锥型光纤后可以有效降低耦合损耗, 并且在不同波长下耦合损耗都维持在一个较低水平。因此, 该接口器件能够实现光纤拼接时物理结构的过渡和不同模场直径的转换, 从而使拼接损耗降到最低。
Abstract
A novel graded tapered fiber optic interface device is proposed. The interface device is a tapered graded photonic crystal fiber (PCF) about 150 mm in length. Using the finite element method, we studied the loss between different fibers with great difference in mode field diameters when they were splicing. The results showed that the coupling loss can effectively reduce after joining the tapered optical fiber between the fibers with the mode field diameter 9 μm and 10.4μm, and coupling losses are maintained at a low level at different wavelengths. Thus, the interface device can achieve the transition of the physical structure when the optical fibers splice and the conversion between the optical fibers with different mode field radius, thereby minimizing the splicing loss.
参考文献

[1] Marcuse D. Loss analysis of sigle-mode fiber splices[J]. Bell Syst Tech J, 1977, 56(5): 703-718.

[2] Meunier J P, Hosain S I.An accurate splice loss analysis for single-mode graded-index fibers with mismatched parameters[J]. J Lightwave Technology, 1992, 11(10): 1521-1526.

[3] 王岩山, 柯伟伟, 孙殷宏, 等. 纤芯错位对高功率光纤激光性能的影响[J]. 强激光与粒子束, 2014, 26: 121001. (Wang Yanshan, Ke Weiwei, Sun Yinhong, et al. Effect of core dislocation on performance of high power fiber laser. High Power Laser and Particle Beams, 2014, 26: 121001)

[4] 张巍, 张磊, 陈实, 等. 高非线性光子晶体光纤与单模光纤低损耗熔接实验[J]. 中国激光, 2006, 33(10): 1389-1392. (Zhang Wei, Zhang Lei, Chen Shi, et al. Low loss splicing experiment of high nonlinearity photonic crystal fiber and single mode fiber. Chinese Journal of Lasers, 2006, 33(10): 1389-1392)

[5] Xiao Limin, Jin Wei, Demokan M S, et al. Photopolymer microtips for efficient light coupling between single-mode fibers and photonic crystal fibers[J]. Opt Lett, 2006, 31(11): 1791-1793.

[6] 尤杨, 赵茗, 杨振宇. 波导与光纤耦合设计研究进展[J]. 激光与光电子学进展, 2013, 50: 020007. (You Yang, Zhao Ming, Yang Zhenyu. Progress of study on waveguide and fiber coupling design. Laser & Optoelectronics Progress, 2013, 50: 020007)

[7] 陈丽颖. 光子晶体光纤及其耦合分析[D]. 武汉: 华中科技大学, 2006: 33-34. (Chen Liying. Research on photonic crystal fibers and coupling. Wuhan: Huazhong University of Science and Technology, 2006: 33-34)

[8] 付广伟, 郭璇, 毕卫红. 光子晶体光纤熔接机理的研究[J]. 燕山大学学报, 2007, 31(2): 117-120. (Fu Guangwei, Guo Xuan, Bi Weihong. Study on photonic crystal fiber splicing mechanism. Journal of of Yanshan University, 2007, 31(2): 117-120)

[9] Chandalia J K, Eggleton B J, Windeler, et al. Adiabatic coupling in tapered air-silica microstructure optic fiber[J]. Photon Technol Lett, 2001, 1(13): 52-54.

[10] 张世强, 张政, 蔡雷, 等. 基于单透镜的空间光-单模光纤耦合方法[J]. 强激光与粒子束, 2014, 26: 031006. (Zhang Shiqiang, Zhang Zheng, Cai Lei, et al. Laser injecting method from free space beam to single-model fiber using single lens . High Power Laser and Particle Beams, 2014, 26: 031006)

[11] Sharma D K, Sharma A. Splicing of index-guiding microstructured optical fibers and single-mode fibers by controlled air-hole collapse: an analytical approach[J]. Opt Quant Electron, 2014, 46(3): 409-422.

[12] Xiao Limin, Demokan M S, Jin Wei, et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. J Lightwave Technol, 2007, 25(11): 3563-3574.

[13] Zhou Xuanfeng, Chen Zilun, Chen Haihuan, et al. Fusion splicing small-core photonic crystal fibers and single-mode fibers by controlled air hole collapse[J]. Opt Commun, 2012, 285(24): 5283-5286.

[14] 王彦斌, 陈子伦, 侯静, 等. 光子晶体光纤模场直径增加方法[J]. 强激光与粒子束, 2010, 22(7): 1052-1056. (Wang Yanbin, Chen Zilun, Hou Jing, et al. Effectively increasing mode field diameter of photonic crystal fibers. High Power Laser and Particle Beams, 2010, 22(7): 1052-1056)

[15] 肖志刚, 蒋瑶. 激光束的锥台光纤传输[J]. 强激光与粒子束, 2011, 23(7): 1726-1730. (Xiao Zhigang, Jiang Yao. Tapered fiber relay for laser beam transportation. High Power Laser and Particle Beams, 2011, 23(7): 1726-1730)

[16] 王海林, 黄蔚村, 洪新华. 1550 nm单模锥形光纤模场的演化特性[J]. 强激光与粒子束, 2012, 24(5): 1052-1056. (Wang Hailin, Huang Weicun, Hong Xinhua. Mode field evolution in 1550 nm single-mode tapered fiber. High Power Laser and Particle Beams, 2012, 24(5): 1052-1056)

[17] Brechet F, Marcou J, Pagnoux D, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method[J]. Opt Fiber Technol, 2000, 6(2): 181-191.

[18] Meunier J P, Wang Z H, Hosain S I. Evaluation of splice loss between two nonidentical single-mode graded-index fibers[J]. IEEE Photon Technol Lett, 1994, 8(6): 998-1000.

[19] 靳伟, 阮双琛. 光纤传感技术新进展[M]. 北京: 科学出版社, 2005. (Jin Wei, Ruan Shuangchen. Fiber optic sensing technology advances. Beijing: Seience Press, 2005)

李绪友, 凌卫伟, 许振龙, 魏延辉, 李通. 新型缓变锥型PCF结构接口耦合损耗特性[J]. 强激光与粒子束, 2015, 27(5): 051008. Li Xuyou, Ling Weiwei, Xu Zhenlong, Wei Yanhui, Li Tong. Coupling loss characteristics of the novel tapered photonic crystal fiber interface[J]. High Power Laser and Particle Beams, 2015, 27(5): 051008.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!