红外与毫米波学报, 2017, 36 (4): 408, 网络出版: 2017-10-12  

xW波段三维近场安检成像系统

Three-dimensional near-field surveillance imaging using W-band system
作者单位
北京理工大学 信息与电子学院, 北京 100081
摘要
介绍了一套基于频率步进机制的W波段三维近场安检成像系统以及相应的成像算法.W波段信号可以穿透普通衣物, 对人员携带的藏匿物品进行成像.成像算法通过在频率波数域进行插值处理可以完全补偿近场的波前曲面.文中阐述了频率波数域的插值过程以及实验数据的预处理过程.成像系统通过发射宽带信号得到高分辨距离像, 通过提高工作频率得到高分辨方位像, 方位向分辨率优于5 mm.成像实验结果表明该系统性能优于现有的Ka波段成像系统.
Abstract
A W-band stepped-frequency three-dimensional near-field surveillance imaging system together with an effective radar imaging algorithm is presented. W-band signal is able to penetrate common clothing barriers to form an image of a person as well as any concealed items. Performing the image reconstruction procedure in the frequency–wavenumber domain, the algorithm is able to completely compensate the wavefront curvature in the near field through interpolation process. The interpolation relationship in frequency–wavenumber domain between sampled data and desired data was demonstrated. Moreover, the difference between algorithm model and experimental data are revealed. High range resolution and lateral resolution were obtained by emitting wideband stepped frequency signal and adopting high operating frequency. The cross-range resolution of the imaging result is better than 5 mm. The scheme of imaging system is described in detail along with a set of imaging results to show its superior imaging precision and sensitivity compared with existing Ka-band equipment.
参考文献

[1] Osumi N, Ueno K. Microwave holographic imaging method with improved resolution[J]. Antennas and Propagation, IEEE Transactions on, 1984, 32(10):1018-1026.

[2] Zech C, Hülsmann A, Kallfass I, et al. Active millimeter-wave imaging system for material analysis and object detection[J]. SPIE Security Defense. International Society for Optics and Photonics, 2011: 81880D-81880D-9.

[3] Iizuka K, Gregoris L G. Application of microwave holography in the study of the field from a radiating source[J]. Applied Physics Letters, 1970, 17(12): 509-512.

[4] Farhat N H, Guard W R. Millimeter wave holographic imaging of concealed weapons[J]. Proceedings of the IEEE, 1971, 59(9):1383-1384.

[5] Corredoura P, Baharav Z, Taber B, et al. Millimeter-wave imaging system for personnel screening: scanning 10^ 7 points a second and using no moving parts[C]//Defense and Security Symposium. International Society for Optics and Photonics, 2006: 62110B-62110B-8.

[6] Cooper K B, Dengler R J, Llombart N, et al. Penetrating 3-D imaging at 4-and 25-m range using a submillimeter-wave radar[J]. Microwave Theory and Techniques, IEEE Transactions on, 2008, 56(12):2771-2778.

[7] Kemp M C. Millimetre wave and terahertz technology for the detection of concealed threats: a review[C]//Optics/Photonics in Security and Defence. International Society for Optics and Photonics, 2006: 64020D-64020D-19.

[8] Howells E R, Phillips D C, Rogers D. The probability distribution of X-ray intensities. II. Experimental investigation and the X-ray detection of centres of symmetry[J]. Acta Crystallographica, 1950, 3(3):210-214.

[9] Sheen D M, McMakin D L, Hall T E. Three-dimensional millimeter-wave imaging for concealed weapon detection[J]. Microwave Theory and Techniques, IEEE Transactions on, 2001, 49(9):1581-1592.

[10] Collins H D, Gribble R P, Hall T E, et al. Real-time holographic surveillance system: U.S.Patent 5,455,590[P]. 1995-10-3.

[11] Sheen D M, Collins H D, Hall T E, et al. Real-time wideband holographic surveillance system,” U.S. Patent 5 557 283, Sept. 17, 1996.

[12] Goldsmith P F, Hsieh C T, Huguenin G R, et al. Focal plane imaging systems for millimeter wavelengths[J]. Microwave Theory and Techniques, IEEE Transactions on, 1993, 41(10):1664-1675.

[13] Luukanen A, Ala-Laurinaho J, Leivo M, et al. Developments towards real-time active and passive sub-millimeter wave imaging for security applications[C]//Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International. IEEE, 2012:1-3.

[14] Abril J, Nova E, Broquetas A, et al. Combined passive and active millimeter-wave imaging system for concealed objects detection[C]/Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010 35th International Conference on. IEEE, 2010: 1-2.

[15] HAN Dong-Hao, LIU Hao, ZHANG De-Hai, et al. Passive submillimeter-wave imaging demonstrated by two-element interferometer[J]. J.Infrared Millim.Waves(韩东浩,刘浩,张德海,等.干涉式被动亚毫米波成像系统.红外与毫米波学报), 2016, 35(6):656-661.

[16] WANG Nan-Nan, QIU Jing-Hui, ZHANG Peng-Yu, et al. Passive millimeter wave focal plane array imaging technology[J]. J.Infrared Millim.Waves.(王楠楠,邱景辉,张鹏宇,等.被动毫米波焦面阵成像技术研究. 红外与毫米波学报), 2011, 30(5):419-424.

[17] Coward P, Appleby R. Development of an illumination chamber for indoor millimeter-wave imaging[J]. Proc SPIE, 2003, 5077:54-61.

[18] Edrich M, Weiss G. Second-generation Ka-band UAV SAR system[C]//Microwave Conference, 2008. EuMC 2008. 38th European. IEEE, 2008:1636-1639.

[19] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic aperture radar signal processing algorithms[M]. Boston: MA: Artech House, 1995.

[20] Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1992, 30(4):706-713.-

程航, 郑海涛, 敬汉丹, 李世勇, 孙厚军. xW波段三维近场安检成像系统[J]. 红外与毫米波学报, 2017, 36(4): 408. CHENG Hang, ZHENG Hai-Tao, JING Han-Dan, LI Shi-Yong, SUN Hou-Jun. Three-dimensional near-field surveillance imaging using W-band system[J]. Journal of Infrared and Millimeter Waves, 2017, 36(4): 408.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!