人工晶体学报, 2020, 49 (12): 2287, 网络出版: 2021-01-26  

单层n型MoS2/p型c-Si异质结太阳电池数值模拟

Numerical Simulation of Monolayer n-Type MoS2/p-Type c-Si Heterojunction Solar Cells
作者单位
江西科技学院智能工程学院,南昌 330098
摘要
单层二硫化钼(MoS2)是一种具有优异光电性能的半导体材料,在太阳能能量转换中表现出很大的应用潜力。本文基于AMPS模拟软件,对单层n型MoS2/p型c-Si异质结太阳电池进行了数值模拟与分析。通过模拟优化,n型MoS2的电子亲和能为3.75 eV、掺杂浓度为1018 cm-3,p型c-Si的掺杂浓度为1017 cm-3时,太阳电池能够取得最高22.1%的转换效率。最后模拟了n型MoS2/p型c-Si异质结界面处的界面态对太阳电池性能的影响,发现界面态密度超过1011 cm-2·eV-1时会严重影响太阳电池的光伏性能。
Abstract
Monolayer MoS2 is a promising semiconductor material for solar energy conversion application because of its excellent optoelectronic properties. In this study, monolayer n-type MoS2/p-type c-Si heterojunction solar cell was proposed and simulated using AMPS software. The different factors influenced the photovoltaic performance of the solar cell were studied. The simulation results show that the solar cell can achieve the highest conversion efficiency of 22.1% with the electron affinity of n-type MoS2 is 3.75 eV, the doping concentration of n-type MoS2 is 1018 cm-3, and the doping concentration of p-type c-Si is 1017 cm-3. Finally, the influence of interface states at the n-type MoS2/p-type c-Si heterointerface on the overall performance of solar cell is simulated. It is found that the interface state density over 1011 cm-2·eV-1 will seriously affect the photovoltaic performance of solar cell.
参考文献

[1] Tsai M L, Su S H, Chang J K, et al. Monolayer MoS2 heterojunction solar cells[J]. ACS Nano, 2014, 8(8): 8317-8322.

[2] Choi M, Park Y J, Sharma B K, et al. Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor[J]. Science Advances, 2018, 4(4): eaas8721.

[3] Shim Y S, Kwon K C, Suh J M, et al. Synthesis of numerous edge sites in MoS2 via SiO2 nanorods platform for highly sensitive gas sensor[J]. ACS Appl Mater Interfaces, 2018, 10: 31594-31602.

[4] Dhyani V, Das S. High-speed scalable silicon-MoS2 P-N heterojunction photodetectors[J]. Sentific Reports, 2017, 7: 44243.

[5] Lopez-SAnchez O, Alarcon-Llado E, Koman V, et al. Light generation and harvesting in a Van der Waals heterostructure[J].ACS Nano, 2014, 8(3): 3042-3048.

[6] 孔鑫燚,宋雪梅,张林睿,等.石墨烯-硅肖特基结太阳电池的仿真研究[J].太阳能学报,2020,41(7):190-195.

[7] Tiwari P, Patel K, Krishnia L, et al. Potential application of multilayer n-type tungsten diselenide (WSe2) sheet as transparent conducting electrode in silicon heterojunction solar cell[J]. Computational Materials Science, 2017, 136: 102-108.

[8] Huang R M, Yu M, Yang Q R, et al. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells[J]. Computational Materials Science, 2020, 178: 109600.

[9] 李圣浩, 但 易,沈 辉.二硫化钼-硅异质结太阳电池的原位制备及器件模拟[J].科技导报,2016,34(2):39-42.

[10] 罗 伟, 姜 鑫,梁世豪.基于AFORS-HET的单层MoS2(n)/a-Si(i)/c-Si(p)/μc-Si(p+)异质结太阳能电池模拟[J].人工晶体学报, 2020,49(3):422-427.

[11] Mak K F, Lee C, Hone J, et al. Atomically thin MoS2∶A new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105: 136805.

[12] Santos E J G, Kaxiras E. Electrically-driven tuning of the dielectric constant in MoS2 layers[J]. Acs Nano, 2013, 7:10741-10746.

[13] Radisavljevic B, Kis A. Mobility engineering and a metal-insulator transition in monolayer MoS2[J]. Nature Materials, 2013, 12(9): 815-820.

[14] Lu C P, Li G, Mao J, et al. Bandgap, mid-gap states, and gating effects in MoS2[J]. Nano Letters, 2014, 14(8): 4628-4633.

[15] Howell S L, Jariwala D, Wu C C, et al. Investigation of band-offsets at monolayer-multilayer MoS2 junctions by scanning photocurrent microscopy[J]. Nano Letters, 2015, 15(4): 2278-2284.

[16] Zhang H, Ma Y, Wan Y, et al. Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence[J]. Sci Rep, 2015, 5: 8440.

[17] Kim J H, Lee J, Kim J H, et al. Work function variation of MoS2 atomic layers grown with chemical vapor deposition: the effects of thickness and the adsorption of water/oxygen molecules[J]. Applied Physics Letters, 2015, 106(25): 699.

[18] Huang R, Yu M, Yang Q, et al. Numerical simulation for optimization of an ultra-thin n-type WS2/p-type c-Si heterojunction solar cells[J]. Computational Materials Science, 2020, 18: 109600.

[19] Rand B P, Genoe J, Heremans P, et.al. Solar cells utilizing small molecular weight organic semiconductors[J]. Prog Photovoltaics: Res Appl, 2007, 15: 659-676.

[20] Thakur U K, Kisslinger R, Shankar K. One-dimensional electron transport layers for perovskite solar cells[J]. Nanomaterials, 2017, 7(95): 1-27.

[21] Jensen N, Hausner R M, Bergmann R B, et. al. Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells[J]. Prog Photovolt: Res Appl, 2002, 10: 1-13.

陈云, 蔡厚道. 单层n型MoS2/p型c-Si异质结太阳电池数值模拟[J]. 人工晶体学报, 2020, 49(12): 2287. CHEN Yun, CAI Houdao. Numerical Simulation of Monolayer n-Type MoS2/p-Type c-Si Heterojunction Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(12): 2287.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!