强激光与粒子束, 2015, 27 (2): 024109, 网络出版: 2015-02-15  

SOI环形光波导谐振腔双层石墨烯调制器

SOI-ring waveguide-coupled double-layer graphene modulator
作者单位
1 中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
2 中北大学 电子测试技术国防科技重点实验室, 太原 030051
摘要
在片上光互连系统中, 电光调制器起到将电信号调制为光信号的作用, 是光互联系统中的核心部件之一。调制器的3 dB带宽决定着载波所能携带的最大信息量,是衡量调制器性能的核心参数。利用石墨烯和高Q环形谐振腔设计成具有CMOS结构的新型调制器, 其集成了石墨烯的宽带吸收、载流子迁移率高等材料优势和高Q值环形光学谐振腔的光程放大的结构优势, 通过理论计算, 其3 dB调制带宽可以达到100 GHz。同时, 基于微环谐振腔的石墨烯电光调制器结构可以方便的与光互联系统中的波分复用器相集成, 从而提升片上光互联系统的集成度和降低技术复杂性。
Abstract
The electro-optic modulator is an important component in the optical interconnected system, which plays a role in controlling optical signal by electrical pulse. The 3 dB bandwidth is a representative performance parameter that determines the maximum amount of information that can be carried in the input light. An electro-absorption optical modulator concept based upon a dual-graphene layer is presented. The device consists of a silicon-on-insulator micro-ring waveguide resonator upon which two graphene layers reside, separated by a thin insulating region. The lower graphene acts as a tunable absorber, while the upper layer functions as a transparent gate electrode. Calculations based upon realistic graphene material properties and the optical path amplification of micro-ring waveguide resonator show that 3 dB bandwidths over 100 GHz are achievable at near λ=1.55 μm. In addition, the structure of micro-ring waveguide resonator can be easily integrated with optical Wavelength Division Multiplexing(WDM) interconnection system, so as to enhance the degree of integration and reduce technical complexity.
参考文献

[1] Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 2004, 427: 615-618.

[2] Xu Q, Schmidt B, PradhanS, et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 2005, 435: 325-327.

[3] Kuo Y H, Lee Y K, Ge Y, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon[J]. Nature, 2005, 437: 1334-1336.

[4] Liu J,Beals M, Pomerene A, et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators[J]. Nature Photon, 2008, 2(7): 433-437.

[5] MillerD A B, Chemla D S, Damen T C, et al. Band-edge electro-absorption in quantum well structures-the quantum-confined Stark-effect[J]. Phys Rev Lett, 1984, 53: 2173-2176.

[6] Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183-191.

[7] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4: 611-622.

[8] Bolotin K I, Sikes K J, Jiang, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 46: 351-355.

[9] Avouris P, Chen Z H, Perebeinos V. Chemical doping and electron-hole asymmetry in graphene devices[J]. Nat Nanotechnol, 2007, 2: 605-615.

[10] Mak K F, Sfeir M Y, Wu Y, et al. Measurment of the optical conductivity of graphene[J]. Phys Rev Let, 2008, 101: 196405.

[11] Liu M, Yin X, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64-67.

[12] Liu M, Yin X, Zhang X. Double-layer graphene optical modulator[J]. Nano Lett, 2012, 12: 1482-1485.

[13] Koester S J, Li M. High-speed waveguide-coupled graphene-on-graphene optical modulators[J]. Appl Phys Lett, 2012, 100: 171107.

[14] Ando T, Zheng Y, Suzuura H. Dynamical conductivity and zero-mode anomaly in honeycomb lattices[J]. Phys Soc Jpn, 2002, 71: 1318-1324.

[15] Gusynin V, Sharapov S, Carbotte J. Sum rules for the optical and Hall conductivity in graphene[J]. Phys Rev B, 2007, 75: 165407.

[16] George W H. Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. Appl Phys, 2008, 103: 064302.

[17] Wang F, Zhang Y, Tian C, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320: 206-209.

[18] Li Z Q, Henriksen E A, Jiang Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Phys, 2008, 4: 532-535.

[19] Koester Steven J, Li Mo. Waveguide-coupled graphene optoelectronics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20: 6000211.

[20] Xu Jia, Wu Sida, Liu Jiang, et al. Passively Q-switched erbium-doped fiber laser with graphene oxide saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2783-2786.

[21] Zhang Hui, Chen Yu, Wang Zhiteng, et al. Wavelength-tunable passively Q-switched erbium-doped fiber laser with graphene-based saturable absorber[J]. High Power Laser and Particle Beams, 2012, 24(12): 2807-2810.

李艳娜, 汤跃, 韦丽萍, 王永华, 刘耀英, 薛晨阳. SOI环形光波导谐振腔双层石墨烯调制器[J]. 强激光与粒子束, 2015, 27(2): 024109. Li Yanna, Tang Yue, Wei Liping, Wang Yonghua, Liu Yaoying, Xue Chenyang. SOI-ring waveguide-coupled double-layer graphene modulator[J]. High Power Laser and Particle Beams, 2015, 27(2): 024109.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!