液晶与显示, 2020, 35 (12): 1222, 网络出版: 2020-12-28  

物性参数对液晶偏振光栅特性的影响

Influence of physical parameters on the properties of liquid crystal polarization grating
作者单位
1 厦门大学 电子科学与技术学院, 福建 厦门 361005
2 厦门城市职业学院, 福建 厦门361008
摘要
随着现代社会对数据存储容量和信息处理速度要求的不断提高, 更加小型化、集成化的平面光学器件受到了广泛的关注。作为一种典型的可以进行几何相位调制的液晶器件, 液晶偏振光栅具有衍射效率高、偏转角度大、响应时间短等优势, 已经展现出了非常大的应用潜力。然而, 目前液晶偏振光栅在设计制备过程中还存在许多与电光性能相关的问题, 限制其走向实际应用。实现液晶偏振光栅衍射特性的调控需要满足一些先决条件。本文通过选取合适液晶偏振光栅的弹性连续体模型, 主要研究改变液晶材料的物性参数如弹性常数、介电常数等在强、弱两种锚定条件下对临界盒厚和阈值电压的影响。并给出了针对不同应用要求的液晶偏振光栅的制备过程中, 关于液晶材料物性参数选择的理论参考依据。
Abstract
With the demand on increasing data storage capacity and information processing speed in the modern society, more compact and integrated planar optical devices have received widespread attention. As one of the typical liquid crystal (LC) devices to modulate geometric phase, LC polarization gratings have shown great application potential in optical systems due to the advantages such as high diffraction efficiency, large deflection angle, and short response time, etc. However, some of the problems related to electro-optical performances have not yet been overcome in the current manufacturing process of LC polarization gratings, limiting its practical application. The control of diffraction characteristics of LC polarization gratings is subject to certain preconditions. In this work, by optimizing the elastic continuum model used to analyze the LC polarization grating, the influence of LC physical parameters (elastic constant, dielectric constant, etc.) on the critical cell thickness and threshold voltage, under the strong and weak anchoring conditions were investigated, providing the theoretical support for the selection of LC materials with suitable physical parameters for LC polarization gratings toward different applications.
参考文献

[1] WAGH A G, RAKHECHA V C. Density operator description of geometric phenomena in the ray space [J]. Pramana, 2001, 56(2/3): 305-319.

[2] BLIOKH K Y,RODRíGUEZ-FORTUO F J, Nori F, et al. Spin-orbit interactions of light [J]. Nature Photonics, 2015, 9(12): 796-808.

[3] CHEN P, WEI B Y, HU W, et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics [J]. Advanced Materials, 2019, 32(27): 1903665.

[4] 翟冬. 基板表面材料与液晶分子相互作用关系的量子化学定量研究[D]. 天津: 河北工业大学, 2011.

[5] 李松振. 液晶偏振光栅的设计及其光偏转特性研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019.

[6] YAMAGUCHI M, YAMAMOTO T, YUKIMATSU K, et al. Digital free-space photonic switch structure using exciton absorption reflection switch (EARS) arrays [J]. IEEE Photonics Technology Letters, 1993, 5(10): 1203-1206.

[7] KOMANDURI R K, LAWLER K F, ESCUTI M J. A high throughput liquid crystal light shutter for unpolarized light using polymer polarization gratings [C]//Proceedings of the SPIE 8052, Acquisition, Tracking, Pointing, and Laser Systems Technologies XXV. Orlando: SPIE, 2011.

[8] IKEDA T, TSUTSUMI O. Optical switching and image storage by means of azobenzene liquid-crystal films [J]. Science, 1995, 268(5219): 1873-1875.

[9] BROER D J. Molecular architectures in thin plastic films by in-situ photopolymerization of reactive liquid crystals [J]. Journal of the Society for Information Display, 1995, 3(4): 185-189.

[10] CRAWFORD G P, EAKIN J N, RADCLIFFE M D, et al. Liquid-crystal diffraction gratings using polarization holography alignment techniques [J]. Journal of Applied Physics, 2005, 98(12): 123102.

[11] 刘春杰. 主动式液晶偏振光栅的制备研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

[12] BUCK J, SERATI S, HOSTING L, et al. Polarization gratings for non-mechanical beam steering applications [C]//Proceedings of the SPIE 8395, Acquisition, Tracking, Pointing, and Laser Systems Technologies ⅩⅩⅥ. Baltimore: SPIE, 2012.

[13] 王佳, 俞信. 自由空间光通信技术的研究现状和发展方向综述[J]. 光学技术, 2005, 31(2): 259-262, 265.

[14] 刘春杰, 彭增辉, 李松振, 等. 非等光强正交圆偏振光对液晶偏振光栅衍射特性的影响[J]. 液晶与显示, 2018, 33(2): 144-149.

[15] PROVENZANO C, PAGLIUSI P, CIPPARRONE G. Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces [J]. Applied Physics Letters, 2006, 89(12): 121105.

[16] OH C, ESCUTI M J. Achromatic diffraction from polarization gratings with high efficiency [J]. Optics Letters, 2008, 33(20): 2287-2289.

[17] OH C, ESCUTI M J.Achromatic polarization gratings as highly efficient thin-film polarizing beamsplitters for broadband light [C]//Proceedings of the SPIE 6682, Polarization Science and Remote Sensing III. San Diego: SPIE, 2007.

[18] OH C, ESCUTI M J. Time-domain analysis of periodic anisotropic media at oblique incidence: an efficient FDTD implementation [J]. Optics Express, 2006, 14(24): 11870-11884.

[19] OH C, ESCUTI M J. Numerical analysis of polarization gratings using the finite-difference time-domain method [J]. Physical Review A, 2007, 76(4): 043815.

[20] KOMANDURI R K, ESCUTI M J. Elastic continuum analysis of the liquid crystal polarization grating [J]. Physical Review E, 2007, 76(2): 021701.

[21] 谢毓章.液晶物理学 [M]. 北京: 科学出版社, 1988.

[22] YEH P.Optics of liquid crystal displays [C]//Proceedings of 2007 Conference on Lasers and Electro-Optics - Pacific Rim. Seoul: IEEE, 2007.

[23] STEWART I W.The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction [M]. London: Taylor & Francis, 2004.

[24] SLUSSARENKO S, ALBERUCCI A, JISHA C P, et al. Guiding light via geometric phases [J]. Nature Photonics, 2016, 10(9): 571-575.

[25] 孙睿鹏, 黄锡珉. 向列液晶的表面锚定能[J]. 液晶通讯, 1993, 1(2): 1-13.

[26] 王新久. 液晶光学和液晶显示[M]. 北京: 科学出版社, 2006.

[27] 邹朋飞, 魏冰妍, 杨淑蕾, 等. 光控取向技术应用于液晶非显示领域的若干进展[J]. 液晶与显示, 2017, 32(6): 411-423.

[28] ICHIMURA K, SUZUKI Y, SEKI T, et al. Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer [J]. Langmuir, 1988, 4(5): 1214-1216.

[29] ICHIMURA K. Photoalignment of liquid-crystal systems [J]. Chemical Reviews, 2000, 100(5): 1847-1873.

[30] SCHADT M, SCHMITT K, KOZINKOV V, et al. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers [J]. Japanese Journal of Applied Physics, 1992, 31(7): 2155-2164.

[31] YAROSHCHUK O, REZNIKOV Y. Photoalignment of liquid crystals: basics and current trends [J]. Journal of Materials Chemistry, 2012, 22(2): 286-300.

[32] AKIYAMA H, KAWARA T, TAKADA H, et al. Synthesis and properties of azo dye aligning layers for liquid crystal cells [J]. Liquid Crystals, 2002, 29(10): 1321-1327.

[33] 陈鹏. 基于光控液晶畴结构产生和检测涡旋光[D]. 南京: 南京大学, 2019.

[34] 张俊瑞. 向列相液晶光控取向技术的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2006.

[35] LEE Y J, BAEK J H, KIM Y, et al. Enhanced surface anchoring energy for the photo-alignment layer with reactive mesogens for fast response time of liquid crystal displays [J]. Journal of Physics D: Applied Physics, 2013, 46(14): 145305.

[36] KIMURA M, NAKATA S, MAKITA Y, et al. Strong liquid crystal anchoring on photo-alignment copolymer films containing ω-(4-chalconyloxy)alkyl side groups [J]. Japanese Journal of Applied Physics, 2001, 40(4A): L352-L354.

[37] SAKAMOTO M J P R D. Alignment technology and applications of liquid crystal devices [J]. Physical Review D, 2005, 74(1): 251-255.

[38] ESCUTI M J, JONES W M. A polarization-independent liquid crystal spatial light modulator [C]//Proceedings of the SPIE 6332, Liquid Crystals X. San Diego: SPIE, 2006.

[39] ESCUTI M J, JONES W M. Polarization-independent switching with high contrast from a liquid crystal polarization grating [J]. SID Symposium Digest of Technical Papers, 2006, 37(1): 1443-1446.

[40] KOMANDURI R K, JONES W M, OH C, et al. Polarization-independent modulation for projection displays using small-period LC polarization gratings [J]. Journal of the Society for Information Display, 2007, 15(8): 589-594.

[41] ZHAO W, WU C X, IWAMOTO M. Weak boundary anchoring, twisted nematic effect, and homeotropic to twisted-planar transition [J]. Physical Review E, 2002, 65(3): 031709.

[42] CARR E F, HOAR E A, MacDonald W T. Influence of electric fields on the NMR spectra of the liquid crystalp-(Anisalamino)-phenyl acetate [J]. The Journal of Chemical Physics, 1968, 48(6): 2822-2823.

[43] KLASEN M,BREMER M, GTZ A, et al. Calculation of optical and dielectric anisotropy of nematic liquid crystals [J]. Japanese Journal of Applied Physics, 1998, 37(8A): L945-L948.

[44] 赵怿哲. 基于液晶材料的电磁超材料机理及功能性器件研究[D]. 成都: 电子科技大学, 2019.

[45] THISAYUKTA J, SHIRAKI H, SAKAI Y, et al. Dielectric properties of frequency modulation twisted nematic LCDs doped with silver nanoparticles [J]. Japanese Journal of Applied Physics, 2004, 43(8A): 5430-5434.

[46] 范志新. 液晶器件工艺基础[M]. 北京: 北京邮电大学出版社, 2000.

[47] 张慧敏. 液晶分子结构对聚合物分散液晶电光性能影响规律的研究[D]. 北京: 北京科技大学, 2019.

[48] 费运丰. 向列相液晶中强非局域空间光孤子[D]. 哈尔滨: 哈尔滨工业大学, 2014.

陈雨诺, 罗炜程, 鄢宏杰, 陈鹭剑. 物性参数对液晶偏振光栅特性的影响[J]. 液晶与显示, 2020, 35(12): 1222. CHEN Yu-nuo, LUO Wei-cheng, YAN Hong-jie, CHEN Lu-jian. Influence of physical parameters on the properties of liquid crystal polarization grating[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(12): 1222.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!