激光与光电子学进展, 2017, 54 (10): 101408, 网络出版: 2017-10-09   

飞秒激光诱导铝基的超疏水表面 下载: 810次

Superhydrophobic Surface of Aluminium Base Induced by Femtosecond Laser
作者单位
湖北工业大学机械工程学院, 湖北 武汉 430068
摘要
利用不同能量的飞秒激光脉冲对铝基材料表面接触角进行调控, 并对其浸润性转变机理进行了分析研究。结果表明, 经飞秒激光加工和时效处理后, 铝基材料表面最终稳定的浸润性状态与激光能量及时效时间相关。随着激光能量的增大, 表面接触角由70°转变为150°以上。对不同能量加工条件下的铝基表面形貌、粗糙度及化学成分进行了分析, 结果表明, 激光加工后的样品浸润性由亲水状态最终转变为超疏水状态。在不同脉冲能量区间均可得到超疏水表面, 但其表面微观结构存在非周期性或周期性结构的差异, 疏水性能的形成机理不同。
Abstract
The surface contact angles of aluminum-based materials is regulated and controlled by using femtosecond laser pulses with different energies, and the transformation mechanism of wettability is analyzed and studied. The results show that the final stable wettability state of aluminum-based material surfaces after the femtosecond laser processing and aging treatment is related to the laser energy and the aging time. With the increase of the laser energy, the surface contact angle is changed from 70° to above 150°. The morphology, roughness and chemical compositions of aluminum-based surfaces are studied under different pulse energy processing conditions. The results show that the wettability of a laser-processed sample changes from a hydrophilic state to a final super-hydrophobic state. The super-hydrophobic surfaces can be obtained in different pulse energy regions, but there are non-periodic or periodic structural differences in their surface microstructures, and the formation mechanisms of hydrophobic properties are different.
参考文献

[1] Tian Y, Jiang L. Design of bioinspired, smart, multiscale interfacial materials with superwettability[J]. MRS Bulletin, 2015, 40(2): 155-165.

[2] Mishchenko L, Hatton B, Bahadur V,et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. Acs Nano, 2015, 4(12): 7699-7707.

[3] Wang Y, Zhang D, Lu Z. Hydrophobic Mg-Al layered double hydroxide film on aluminum: Fabrication and microbiologically influenced corrosion resistance properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474: 44-51.

[4] Lee H B, Yeo I W, Lee K-K. Fluid flow through rough-walled rock fractures with hydrophobic surfaces[J]. Geosciences Journal, 2014, 18(4): 375-380.

[5] 潘光, 黄桥高, 胡海豹, 等. 超疏水表面的润湿性及其应用研究[J]. 材料导报, 2009, 23(21): 64-67.

    Pan Guang, Huang Qiaogao, Hu Haibao, et al. Study on wettability of superhydrophobic surface and its application[J]. Materials Review, 2009, 23(21): 64-67.

[6] Yong J, Chen F, Yang Q, et al. Femtosecond laser weaving superhydrophobic patterned PDMS surfaces with tunable adhesion[J]. Journal of Physical Chemistry C, 2016, 117(47): 24907-24912.

[7] Choo S, Choi H-J, Lee H. Replication of rose-petal surface structure using UV-nanoimprint lithography[J]. Materials Letters, 2014, 121: 170-173.

[8] 丁云飞, 伍彬, 吴会军. 柱状微结构超疏水表面制备及其结霜性能研究[J]. 表面技术, 2015(1): 106-111.

    Ding Yunfei, Wu Bin, Wu Huijun. Preparation of super-hydrophobic surface with cylindrical microstructure and the research of the surface frost characteristics[J]. Surface Technology, 2015(1): 106-111.

[9] 李恒, 崔少伟, 胡新嵩, 等. 有机硅/二氧化硅溶胶制备超疏水表面[J]. 广东化工, 2016, 43(1): 38-39.

    Li Heng, Cui Shaowei, Hu Xinsong, et al. The preparation of superhydrophobic surface by organic silicon/silica sol[J]. Guangdong Chemical Industry, 2016, 43(1): 38-39.

[10] 杨建军. 飞秒激光超精细"冷"加工技术及其应用(续)[J]. 激光与光电子学进展, 2004, 41(4): 39-47.

    Yang Jianjun. Femtosecond laser "cold" micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress, 2004, 41(4): 39-47.

[11] 龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7): 0706002.

    Long Jiangyou, Wu Yingchao, Gong Dingwei, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese J Lasers, 2015, 42(7): 0706002.

[12] 泮怀海, 王卓, 范文中, 等. 飞秒激光诱导超疏水钛表面微纳结构[J]. 中国激光, 2016, 43(8): 0802002.

    Pan Huaihai, Wang Zhuo, Fan Wenzhong, et al. Superhydrophobic titanium surface micro/nanostructures induced by femtosecond laser[J]. Chinese J Lasers, 2016, 43(8): 0802002.

[13] 刘 畅, 吴厚安. 激光烧蚀制备超疏水PDMS表面[J]. 科技创新导报, 2015, 12(31): 115-116.

[14] 黄宗明, 周明, 李琛, 等. 飞秒激光对聚四氟乙烯表面的影响[J]. 功能材料, 2010, 41(12): 2163-2165.

    Huang Zongming, Zhou Ming, Li Chen, et al. Femtosecond laser on the surface of PTFE[J]. Journal of Functional Materials, 2010, 41(12): 2163-2165.

[15] 陈列, 王呈祥, 汪幸, 等. 纳秒激光单脉冲对阻尼橡胶材料的损伤特性[J]. 激光与光电子学进展, 2016, 53(8): 081402.

    Chen Lie, Wang Chengxiang, Wang Xing, et al. Damage properties of single pulse of nanosecond laser on damping rubber material[J]. Laser & Optoelectronics Progress, 2016, 53(8): 081402.

[16] Woo S H, Park J, Min B R.Relationship between permeate flux and surface roughness of membranes with similar water contact angle values[J]. Separation and Purification Technology, 2015, 146: 187-191.

[17] Patankar N A. Mimicking the lotus effect:Influence of double roughness structures and slender pillars[J]. Langmuir, 2004, 20(19): 8209-8213.

[18] Kietzig A-M, Mirvakili M N, Kamal S, et al. Laser-patterned super-hydrophobic pure metallic substrates: Cassie to wenzel wetting transitions[J]. Journal of Adhesion Science and Technology, 2011, 25(20): 2789-2809.

杨奇彪, 邓波, 汪于涛, 肖晨光, 汪幸, 陈列, 郑重, 娄德元, 陶青, 翟中生, Bennett Peter, 刘顿. 飞秒激光诱导铝基的超疏水表面[J]. 激光与光电子学进展, 2017, 54(10): 101408. Yang Qibiao, Deng Bo, Wang Yutao, Xiao Chenguang, Wang Xing, Chen Lie, Zheng Zhong, Lou Deyuan, Tao Qing, Zhai Zhongsheng, Bennett Peter, Liu Dun. Superhydrophobic Surface of Aluminium Base Induced by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101408.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!