光学 精密工程, 2013, 21 (10): 2473, 网络出版: 2013-11-01   

光谱共焦显微镜的线性色散物镜设计

Design of linear dispersive objective for chromatic confocal microscope
作者单位
中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
摘要
由于色散物镜轴向色散与波长间的非线性会导致仪器整体性能下降,本文研究了光学系统轴向色散与透镜组之间的关系,推导了轴向色散的传递公式。为得到较大的线性轴向色散,根据轴向色散的传递公式提出了一种正负透镜组均采用线性色散光焦度组合且正负透镜组分离的镜头结构。光学优化设计表明,具有正负透镜分离结构的色散物镜可以得到低的球差和大的轴向色散,而且具有较大的工作距离。设计的色散物镜在430~710 nm得到了1 mm的轴向色散,轴向色散与波长之间的相对非线性度为4.6%,灵敏度的波动量小于整体的1/3,优于之前的研究。采用所设计的色散物镜,光谱共焦显微镜能够得到优于0.3 μm的轴向分辨率和优于5 μm的横向分辨率,满足精密测量的需求。
Abstract
As the nonlinearity between the Axial Chromatic Aberration (ACA) and the wavelength of a dispersive objective would lower the overall performance of a chromatic confocal microscope, the dependence of the ACA of an optical system on the lens assembly was studied and the transfer principle of ACA was derived. Based on ACA transfer principle, a dispersive objective configured with a negative and a positive lens groups was proposed, in which both the negative and positive lens groups could generate the linear ACA with specified focal power distribution. Optimized result indicates that the dispersive objective based on the proposed configuration has small longitudinal aberration,a large ACA, and a long working distance. The ACA of dispersive objective is 1 mm in 430-710 nm. The relative nonlinearity of ACA is about 4.6% and the deviation of sensitivity is less than 1/3 that of a whole, superior to traditional ones. With designed dispersive objective, the chromatic confocal microscope can achieve an axial resolution of 0.3 μm and a lateral resolution of 5 μm, which satisfies the re-quirements of precise measurement.
参考文献

[1] 王富生, 谭久彬. 表面微观轮廓的高分辨率光学测量方法[J]. 光学 精密工程, 2000, 8(4): 309-315.

    WANG F SH, TAN J B. Methods of high resolution optical measurement for surface profile [J]. Opt. Precision Eng., 2000, 8(4): 309-315.(in Chinese)

[2] 曾毅波, 蒋书森, 黄彩虹, 等. 激光共焦扫描显微镜在微机电系统中的应用[J]. 光学 精密工程, 2008, 16(7): 1241-1246.

    ZENG Y B, JIANG SH S, HUANG C H, et al.. Application of laser scanning confocal microscope in micro-electro-mechanical system [J]. Opt. Precision Eng., 2008, 16(7): 1241-1246.(in Chinese)

[3] ARRASMITH C L, PATIL C A, DICKENSHEET D L, et al.. A MEMS based handheld confocal microscope with Raman spectroscopy for in-vivo skin cancer diagnosis [J].SPIE, 2009, 7169:71690N.

[4] AHN M K, CHUN B S, SONG C, et al.. Development of in-vivo confocal microscope for reflection and fluore scence imaging simultaneously [J]. SPIE, 2010, 7568: 756821.

[5] BROWNE M A, AKINYEMI O, CROSSLEY F, et al.. Stage-scanned chromatically aberrant confocal micro-scope for 3-D surface imaging [J]. SPIE, 1992, 1660:532-541.

[6] MCBRIDE J W, BOLTRYK P J, ZHAO Z. The relationship between surface incline and confocal chromatic aberration sensor response [J]. SPIE, 2007, 6618: 66181F.

[7] MIKS A, NOVAK A, NOVAK P. Analysis of method for measuring thickness of plane-parallel plates and lenses using chromatic confocal sensor [J]. App. Opt., 2010, 49(17): 3259-3264.

[8] 乔杨,张宁,徐熙平, 等. 基于共焦法的透镜厚度测量系统设计[J]. 仪器仪表学报, 2011, 32(7): 1635-1641.

    QIAO Y, ZHANG N, XU X P, et al.. Design of lens thickness measurement system based on confocal technology [J]. Chinese Journal of Scientific Instrument, 2011, 32(7): 1635-1641. (in Chinese)

[9] 马小军, 高党忠, 杨蒙生, 等. 应用白光共焦光谱测量金属薄膜厚度[J]. 光学 精密工程, 2011, 19(1): 17-22.

    MA X J, GAO D ZH, YANG M SH, et al.. Measurement of thickness of metal thin film by using chromatic confocal spectral technology [J]. Opt. Precision Eng., 2011, 19(1):17-22. (in Chinese)

[10] ISO 25178-2010: Geometric Product Specifications (GPS)- Surface texture: areal [S].

[11] RUPRECHT A K, PRUSS C, TIZIANI H J, et al.. Confocal micro-optical distance sensor: principle and design [J]. SPIE, 2005, 5856:128-135.

[12] 朱万彬, 钟俊, 莫仁芸,等. 光谱共焦位移传感器物镜设计[J]. 光电工程, 2010, 37(8): 62-66.

    ZHU W B, ZHONG J, MO R Y, et al.. Design of spectral confocal chromatic displacement sensor objective [J]. Opto-Electronic Engineering, 2010, 37(8):62-66. (in Chinese)

[13] 刘乾, 杨维川, 袁道成, 等. 光谱共焦位移传感器的色散物镜设计[J]. 光电工程, 2011, 28(7): 131-135.

    LIU Q, YANG W CH, YUAN D CH, et al.. Design of dispersive objective for chromatic confocal displacement sensor [J]. Opto-Electronic Engineering, 2011, 28(7): 131-135. (in Chinese)

[14] PRUSS C, RUPRECHT A, KORNER K, et al.. Diffractive elements for chromatic confocal sensors [J]. DGaO Proc., 2005: 106-107.

[15] BERKOVIC G, SHAFIR E, GOLUB M A, et al.. Multi-wavelength fiber-optic confocal position sensor with diffractive optics for enhanced measurement range [J].SPIE, 2007, 6619: 66190U.

[16] GARZON J, GHARBI T, MENESES J. Real time determination of the optical thickness and topography of tissues by chromatic confocal microscopy [J]. J. Opt. A: Pure Appl. Opt., 2008, 10:1-8.

[17] MIKS A, NOVAK J, NOVAK P. Theory of chromatic sensor for topography measurements [J]. SPIE, 2007, 6609: 66090U.

[18] 刘乾, 杨维川, 袁道成, 等. 光谱共焦显微镜中色散物镜材料的优化选择[J]. 光电工程, 2012, 39(8):111-117.

    LIU Q, YANG W CH, YUAN D CH, et al.. Optimization and selection of materials for dispersive objective of chromatic confocal microscope [J]. Opto-Electronic Engineering, 2012, 39(8):111-117. (in Chinese)

[19] 唐志列, 黄佐华, 梁瑞生, 等. 共焦显微镜的纵向分辨率极限及其判据[J]. 量子电子学报, 2000,17(3): 199-204.

    TANG ZH L, HUANG Z H, LIANG R SH,et al.. The vertical resolution limit and its criterion of confocal microscope [J]. Chinese Journal of Quantum Electronics, 2000, 17(3):199-204. (in Chinese)

[20] DOBSON S L, SUN P, FAINMAN Y. Diffractive lenses for chromatic confocal imaging [J]. App. Opt., 1997, 36(20): 4744-4748.

刘乾, 杨维川, 袁道成, 王洋. 光谱共焦显微镜的线性色散物镜设计[J]. 光学 精密工程, 2013, 21(10): 2473. LIU Qian, YANG Wei-chuan, YUAN Dao-cheng, WANG Yang. Design of linear dispersive objective for chromatic confocal microscope[J]. Optics and Precision Engineering, 2013, 21(10): 2473.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!