红外与激光工程, 2019, 48 (8): 0805005, 网络出版: 2019-09-03   

毫秒激光辐射K9玻璃的激光损伤研究

Research on laser-induced damage of K9 glass irradiated by millisecond laser
作者单位
1 南京理工大学 理学院, 江苏 南京 210094
2 南京理工大学 先进固体激光工业和信息化部重点实验室, 江苏 南京 210094
摘要
利用毫秒激光损伤测试平台, 通过改变焦距和聚焦位置, 研究了K9玻璃前后表面附近的损伤概率和损伤形貌。结果表明, 焦平面位于前表面时以热熔损伤为主, 焦平面位于后表面时则以应力损伤为主, 且尺寸明显大于前表面。建立二维热力学模型并对温度场和热应力场进行计算, 结果显示, 径向应力和环向应力是导致材料产生应力损伤的主要因素。激光辐照过程中在前表面产生的燃烧波能够增强激光能量耦合效率, 是材料前表面产生熔融损伤的原因之一。此外, 实验发现,焦距较短时, 损伤概率随焦平面与样品表面距离的增大迅速下降, 焦距较长时, 易在样品前后表面同时产生损伤, 这与透镜的焦深有关。
Abstract
The influences of the focal length and the focal position on the damage probability and the damage morphology near the front and the rear surfaces of K9 glass were studied by using the millisecond laser damage test platform. Results show that, the melting process is dominant when the laser is focused at the front surface. While the stress induced damage is dominant when the focal plane is at the rear surface, and the damage size is obviously larger than that of the front surface. A two-dimensional thermal stress model was established to calculate the temperature field and the thermal stress field. Results show that the radial stress and the hoop stress are the main factors leading to the stress damage. The laser supported combustion wave induced by the laser irradiation at the front surface can enhance the energy coupling efficiency, which is one of the main reasons for the melting process at the front surface. Moreover, for the shorter focal length, the damage probability decreases rapidly with the increase of the distance between the focal plane and the sample surface. While for the longer focal length, the front and the rear surfaces can be damaged simultaneously when the laser is focused at the front surface, which can be attributed to the focal depth of lens.
参考文献

[1] Giuliano C R. Laser-induced damage to transparent dielectric materials[J]. Applied Physics Letters, 1964, 5(7): 137-139.

[2] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10):4023-4037.

[3] 高翔, 邱荣, 周国瑞, 等. 熔石英亚表面杂质对激光损伤概率的影响[J]. 红外与激光工程, 2017, 46(4): 0106002.

    Gao Xiang, Qiu Rong, Zhou Guorui, et al. Effect of subsurface impurities of fused silica on laser induced damage probability[J]. Infrared and Laser Engineering, 2017, 46(4):0106002. (in Chinese)

[4] Raman R N, Demos S G, Shen N, et al. Damage on fused silica optics caused by laser ablation of surface-bound microparticles[J]. Optics Express, 2016, 24(3): 2634-2647.

[5] Duchateau G, Dyan A. Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses[J]. Optics Express, 2007, 15(8): 4557-4576.

[6] 卫耀伟, 刘志超, 陈松林. TiO2/Al2O3薄膜的原子层沉积和光学性能分析[J]. 中国光学, 2011, 4(2): 188-195.

    Wei Yaowei, Liu Zhichoa, Chen Songlin. Optical characteristics of TiO2/Al2O3 thin films and their atomic layer depositions[J]. Chinese Optics, 2011, 4(2): 188-195. (in Chinese)

[7] 李文智, 韦成华, 高丽红, 等. 散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系[J]. 中国光学, 2016, 9(6): 628-642.

    Li Wenzhi, Wei Chenghua, Gao Lihong, et al. Relationship between laser ablation threshold of graphite-SiO2 and scattering light signal[J]. Chinese Optics, 2016, 9(6): 628-642. (in Chinese)

[8] 赵元安, 胡国行, 刘晓凤, 等. 激光预处理技术及其应用[J]. 光学 精密工程, 2016, 24(12): 2938-2947.

    Zhao Yuan′an, Hu Guohang, Liu Xiaofeng, et al. Laser conditioning technology and its application[J]. Optics and Precision Engineering, 2016, 24(12): 2938-2947. (in Chinese)

[9] 罗阳, 胡国行, 赵元安, 等. 激光预处理提升DKDP晶体加工表面的抗损伤能力[J]. 光学 精密工程, 2017, 25(8): 1987-1994.

    Luo Yang, Hu Guohang, Zhao Yuan′an, et al. Improvement of laser damage resistance at surface of DKDP crystal by laser conditioning process[J]. Optics and Precision Engineering, 2017, 25(8): 1987-1994. (in Chinese)

[10] 王凤蕊, 李青芝, 郭德成, 等. KDP晶体激光预处理参数的优化[J]. 红外与激光工程, 2017, 46(3): 0321005.

    Wang Fengrui, Li Qingzhi, Guo Decheng, et al. Laser pretreatment parameters optimization of KDP crystal[J]. Infrared and Laser Engineering, 2017, 46(3): 0321005. (in Chinese)

[11] Miller R A, Borreli N F. Damage in glass induced by linear absorption of laser radiation[J]. Applied Optics, 1966, 6(1):164-165.

[12] Kask N E, Radchenko V V, Fedorov G M, et al. Temperature dependence of the ability of optical glass to withstand 10-msec laser pulses[J]. Soviet Journal of Quantum Electronics, 1977, 7(2): 264-266.

[13] Wang B, Qin Y, Ni X W, et al. Effect of defects on long-pulse laser-induced damage of two kinds of optical thin films[J]. Applied Optics, 2010, 49(29): 5537-5544.

[14] Pan Y X, Wang B, Shen Z H, et al. Effect of inclusion matrix model on temperature and thermal stress fields of K9-glass damaged by long-pulse laser[J]. Optical Engineering, 2013, 52(4): 044302.

[15] Natoli J Y, Gallais L, Akhouayri H, et al. Laser-induced damage of materials in bulk, thin-film, and liquid forms[J]. Applied Optics, 2002, 41(16): 3156-3166.

[16] 刘红婕, 周信达, 黄进, 等. 355 nm纳秒紫外激光辐照下熔石英前后表面损伤的对比研究[J]. 物理学报, 2011, 60(6):065202.

    Liu Hongjie, Zhou Xingda, Huang Jin, et al. Comparison of damage between front and rear surfaces under nanosecond 355 nm laser irradiation on fused silica[J]. Acta Physica Sinica, 2011, 60(6): 065202. (in Chinese)

[17] 邱荣, 王俊波, 任波, 等. 纳秒激光诱导熔石英光学玻璃的损伤增长[J]. 强激光与粒子束, 2012, 24(5): 1057-1062.

    Qiu Rong, Wang Junbo, Ren Bo, et al. Growth of laser-induced damage in fused silica under nanosecond laser irradiation[J]. High Power Laser and Particle Beams, 2012, 24(5): 1057-1062. (in Chinese)

[18] Bude J, Guss G, Matthews M, et al. The effect of lattice temperature on surface damage in fused silica optics[C]// Proceedings of SPIE, 2007, 6720: 672009.

[19] Pan Y X, Lv X M, Zhang H C, et al. Millisecond laser machining of transparent materials assisted by a nanosecond laser with different delays[J]. Optics Letters, 2016, 41(2): 2807-2810.

[20] Stegman R L, Schriempf J T, Hettche L R. Experimental studies of laser-supported absorption waves with 5-ms pulses of 10.6-μ radiation[J]. Journal of Applied Physics, 1973, 44(8): 3675-3681.

[21] Pirri A N, Root R G, Wu P K S. Plasma energy transfer to metal surfaces irradiated by pulsed lasers[J]. AIAA Journal, 1977, 16(12): 1296-1304.

吴朱洁, 潘云香, 赵竞元, 陆健, 沈中华, 倪晓武. 毫秒激光辐射K9玻璃的激光损伤研究[J]. 红外与激光工程, 2019, 48(8): 0805005. Wu Zhujie, Pan Yunxiang, Zhao Jingyuan, Lu Jian, Shen Zhonghua, Ni Xiaowu. Research on laser-induced damage of K9 glass irradiated by millisecond laser[J]. Infrared and Laser Engineering, 2019, 48(8): 0805005.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!