红外与激光工程, 2017, 46 (2): 0217003, 网络出版: 2017-03-31   

光电跟踪自抗扰控制技术研究

Study on photoelectric tracking system based on ADRC
作者单位
1 中国科学院长春光学精密机械与物理研究所 激光与物质相互作用国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了实现对快速运动目标高精度跟踪, 对光电跟踪系统中的自抗扰控制技术进行了研究。根据速度闭环传递函数, 利用三阶非线性扩张观测器估计系统状态变量, 实现对不确定性因素的补偿, 通过改变位置环被控对象传递函数提高系统的跟踪精度。对系统进行仿真与实验研究, 分析自抗扰控制对光电跟踪系统动态和稳态性能的影响, 与PI控制相对比, 结果表明: 对于高速运动目标, 利用自抗扰控制技术可以将系统的跟踪精度提高7倍左右; 对于低速运动目标, 由于摩擦和系统噪声的影响, 系统的跟踪精度仅提高了4倍左右。若在控制回路中引入相位超前环节, 可以将系统的超调量降低40%, 进一步改善了系统的动态性能, 该技术的实现对于高精度跟踪控制的研究具有重要的应用价值。
Abstract
In order to solve the problem of tracking fast moving targets, the control technique based on active disturbance-rejection controller (ADRC) of photoelectric tracking was studied. A third-order nonlinear expansion observer was designed based on the speed closed-loop transfer function to achieve a compensation of uncertainties, and the tracking error was improved by transforming the position transfer function. The performance of ADRC was demonstrated by numerical simulation and experiments. Compared with PI controller, the ADRC method shows better performance in the steady-state tracking error, the results indicate that the tracking error is improved by 7 times while the system tracks fast moving targets. Because of friction and noise, the tracking error is only improved by 4 times while the system tracks low moving targets; If phase compensation is introduced in control loops, the overshoot will decline by 40%, which shows higher practical value for the study of high-precision tracking control system.
参考文献

[1] 王秋平. 光电经纬仪运动目标Kalman预测技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2008.

    Wang Qiuping. Study on the space target Kalman prediction technology for O-E theodolite [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2008. (in Chinese)

[2] 王红宣, 高慧斌, 张树梅. 光电经纬仪的高精度电视自动跟踪[J]. 电光与控制, 2006, 13(4): 107-109.

    Wang Hongxuan, Gao Huibin, Zhang Shumei. High-precision TV auto-tracking system of photoelectric theodolite [J]. Electronics Optics & Control, 2006, 13(4): 107-109. (in Chinese)

[3] 彭树萍, 李博, 姜润强,等. 光电跟踪系统的双模控制[J]. 光学 精密工程, 2016, 24(2): 335-342.

    Peng Shuping, Li Bo, Jiang Runqiang, et al. Dual mode control for electro-optical tracking systems [J]. Opt Precision Eng, 2016, 24(2): 335-342. (in Chinese)

[4] 耿光晓. 卫星激光通信粗瞄控制子系统优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    Geng Guangxiao. Optimized design of satellite laser communication coarse pointing control system[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)

[5] 王帅, 李洪文, 孟浩然,等. 光电望远镜伺服系统速度环的自抗扰控制[J]. 光学 精密工程, 2012, 19(10): 2442-2449.

    Wang Shuai, Li Hongwen, Meng Haoran, et al. Active disturbance rejection controller for speed-loop in telescope servo system[J]. Optics and Precision Engineering, 2012, 19(10): 2442-2449. (in Chinese)

[6] 李贤涛, 张葆, 沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学 精密工程, 2014, 22(8): 2223-2231.

    Li Xiantao, Zhang Bao, Shen Honghai. Improvement of isolation degree of aerial photoelectrical stabilized platform on ADRC[J]. Optics and Precision Engineering, 2014, 22(8):2223-2231. (in Chinese)

[7] 李锦英, 付承毓, 唐涛, 等. 运动平台上光电跟踪系统的自抗扰控制器设计[J]. 控制理论与应用, 2012, 29(7): 955-958, 964.

    Li Jinying, Fu Chengyu, Tang Tao, et al. Design of active disturbance-rejection controller for photoelectric tracking system on moving bed[J]. Control Theory & Applications, 2012, 29(7): 955-958, 964. (in Chinese)

[8] 邱晓波, 窦丽华, 单东升,等. 光电跟踪系统自抗扰伺服控制器的设计[J]. 光学 精密工程, 2010, 18(1): 220-226.

    Qiu Xiaobo, Dou Lihua, Shan Dongsheng, et al. Design of active disturbance rejection controller for electro-optical tracking servo system [J]. Optics and Precision Engineering, 2010,18(1): 220-226. (in Chinese)

[9] Han Jingqing. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.

[10] Huang C E, Li D, Xue Y. Active disturbance rejection control for the ALSTOM gasifier benchmark problem [J]. Control Engineering Practice, 2013, 21(4): 556–564.

[11] Ran Maopeng, Wang Qing, Dong Chaoyang. Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control [J]. Automatica, 2016, 63: 302-310.

[12] Zheng Q, Gao L Q, Gao Z. On validation of extended state observer through analysis and experimentation[J]. Journal of Dynamic Systems Measurement & Control, 2012, 134(2): 224-240.

[13] 张超, 朱纪洪, 高亚奎. 自抗扰控制器的阶次与参数的选取[J]. 控制理论与应用, 2014, 31(11): 1480-1485.

    Zhang Chao, Zhu Jihong, Gao Yakui. Order and parameter selections for active disturbance rejection controller[J]. Control Theory & Applications, 2014, 31(11): 1480-1485. (in Chinese)

王婉婷, 郭劲, 姜振华, 王挺峰. 光电跟踪自抗扰控制技术研究[J]. 红外与激光工程, 2017, 46(2): 0217003. Wang Wanting, Guo Jin, Jiang Zhenhua, Wang Tingfeng. Study on photoelectric tracking system based on ADRC[J]. Infrared and Laser Engineering, 2017, 46(2): 0217003.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!