作者单位
摘要
1 上海市刑事科学技术研究院, 上海市现场物证重点实验室, 上海 200083
2 上海市公安局物证鉴定中心, 上海市现场物证重点实验室, 上海 200083
3 中国科学院上海技术物理研究所杭州大江东空间信息技术研究院, 浙江 杭州 311225
4 中国科学院上海技术物理研究所, 上海 200083
高光谱成像技术在物证检验领域的应用具有非常重要的意义, 其不仅能够记录物证的光谱特征用以分析物质成分, 而且能够准确记录不同成分的空间分布情况, 从而实现无损、 快速、 定位分析物证成分的功能。 高光谱成像物证检验技术的光谱检测范围通常集中在可见-近红外区域, 而现有基于高光谱成像技术的物证检测设备基本只能单独覆盖可见波段或者近红外波段, 无法实现可见-近红外的宽波段检测需求。 为了拓宽成像光谱仪的检测波段范围从而实现提高物证检验精度和增加物证检验种类的目的, 首先分析了推扫式成像光谱仪的组成结构及工作原理, 剖析了直接研制宽波段成像光谱仪的技术难度和高昂成本, 最后提出了将短波段范围的400~1 000 nm可见高光谱成像仪和900~1 700 nm近红外高光谱成像仪相结合的方式实现宽波段范围的方法。 通过2台高光谱成像设备线视场匹配将独立的2台设备联合作为1台设备使用, 采用定标板辅助装调的方法实现2台高光谱成像仪线视场的像素级拼接, 将设备拼接带来的误差降低到不影响输出结果的程度, 最终研制出一种波段范围可达400~1 700 nm的可见-近红外宽波段高光谱物证检测设备。 搭建实验系统, 分别固定2台独立的短波段范围高光谱成像光谱仪, 利用平移台带动检材沿着垂直于线视场的方向移动实现推扫, 所获取的数据立方体具有400~1 700 nm的宽光谱范围, 400~1 000 nm的光谱分辨率为2.5 nm, 1 000~1 700 nm的光谱分辨率为4 nm。 实验结果表明该方法的可行性, 对于宽波段高光谱成像仪的研制具有指导意义, 使高光谱成像仪在物证检验领域具有更高的应用价值和更广的应用范围。
高光谱成像 光谱特征 波段范围 宽波段高光谱 物证探测 Hyperspectral imaging Spectral characteristics Band range Wide range hyperspectral Evidence detection 
光谱学与光谱分析
2020, 40(3): 674
丛敏 1,2齐向东 1糜小涛 1,2于海利 1[ ... ]卢禹先 1,2
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
设计了一种基于干涉检验法的复制拼接光栅测量光路。针对光栅复制拼接光路中入射光角度难以精确测量的问题,分析了光栅拼接实验中入射光角度对光栅拼接的影响。建立了光栅拼接误差模型,分析了五维拼接误差的容限要求。按照光栅复制拼接光路的要求,设计了一种干涉仪角度调节装置。根据误差模型和拼接光路分析了500 mm×500 mm大尺寸中阶梯光栅复制拼接光路中入射光角度误差与拼接误差的关系。 结果显示:入射光角度误差为1°,拼接光路中绕x轴,y轴的转动误差Δθx,Δθy和沿z轴的位移误差Δz的计算值与实际值之间分别相差0.002 1 μrad,0.003 3 μrad和0.348 2 nm时,引起波前差为2.590 1 nm。根据这一计算结果,给出了干涉仪角度调节装置的设计指标,即设置角度调节分度为0.1°时,可满足大尺寸光栅复制拼接要求。
光栅拼接 光栅复制 拼接误差 误差分析 grating mosaic grating replication mosaic error error analysis 
光学 精密工程
2017, 25(12): 3027
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了提高中阶梯光栅光谱仪光谱定标的效率和精度,基于谱图还原算法,提出了利用汞灯多条特征谱线联合定标的思想,设计了中阶梯光栅光谱仪的在线定标算法。以汞灯为定标光源进行光谱定标实验,结果表明该算法在谱图偏差不超过限定范围时可以自动修正谱图还原模型,选择的定标波长越多、分布越均匀,定标精度越高。对于250~600 nm波段内的中阶梯光栅光谱仪,选择5个以上的定标波长可以使定标精度达到仪器理论分辨率0.01 nm。该方法实现了中阶梯光栅光谱仪的自动化光谱定标,使光谱仪在保证高光谱分辨率的前提下更具实用性,具有工程应用价值。
光谱学 光谱定标 中阶梯光栅光谱仪 优化 谱图还原 在线定标 
光学学报
2016, 36(9): 0930001
卢禹先 1,2,*齐向东 1于海利 1李晓天 1[ ... ]尹禄 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
复制拼接是天文领域目前制作大面积平面衍射光栅的重要方法之一。光栅复制拼接需要相应的拼接系统,从成本控制和光栅研制周期角度考虑,一套常规拼接系统应适用于不同参数光栅及不同检测波长的拼接,并且系统拼接精度必须满足光栅拼接要求。根据夫琅禾费远场衍射原理,建立双光栅拼接系统的五维误差理论模型,分析了入射光波长、衍射级次、光栅常数、入射角等参数改变时的拼接误差及其变化趋势,并根据实际拼接需求给出了上述参数的变化范围。计算得到了当光栅参数及检测条件变化时能够满足使用要求的拼接误差精度指标。所得出的拼接误差变化趋势及拼接精度指标对于设计复制光栅拼接系统具有指导意义。
衍射 拼接精度 夫琅禾费原理 复制拼接技术 
中国激光
2016, 43(5): 0508005
卢禹先 1,2,*齐向东 1糜小涛 1姜珊 1[ ... ]尹禄 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
光栅拼接法是目前制作大尺寸平面衍射光栅的重要方法之一,而拼接误差是评价拼接光栅是否能够使用的重要指标之一。实时定量测量拼接误差,能够实现对拼接误差的自动闭环调整,通过实时指导拼接提高光栅拼接的精度。建立了衍射波前与光栅拼接误差关系的数学模型,分析了干涉仪测量光栅拼接误差的原理,用ZYGO干涉仪实现拼接光栅0级及-1级衍射波前的数字化定量提取,分析并计算了拼接误差波前,得到五维拼接误差的数值解。利用拼接光栅-2级的衍射波前验证五维拼接误差结果的准确性,实验结果表明由0级、-1级、-2级拼接波前计算的拼接误差具有较好的一致性,为利用波前检测光栅拼接误差并实现自动化闭环调整提供了理论指导。
衍射 光栅拼接 干涉仪 衍射波前 拼接误差 
光学学报
2016, 36(5): 0505001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!