作者单位
摘要
1 脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
2 西北核技术研究所, 西安 710024
双指数脉冲电流发生器可用于电子系统端口传导耦合实验,主要用于研究电磁敏感器件的电磁脉冲效应的损伤规律。根据实验要求,该发生器能够输出前沿10 ns、脉宽100 ns、电流幅值3 kA的双指数脉冲电流。建立了该发生器的电路模型,并对杂散电容和电感对输出电流波形的影响进行了分析。模拟计算表明,电流信号的过冲现象和后沿叠加干扰信号的原因可能是电阻负载自身存在的杂散电容和测量电流的线圈附近的杂散电容和电感的共同作用导致的。经过理论计算,如果在测量线圈附近添加适当的滤波设备或者用无损同轴电缆引出电流,能够明显地抑制过冲和干扰。
双指数 发生器 杂散电容 杂散电感 double-exponent generator stray capacitor stray inductance 
强激光与粒子束
2016, 28(4): 045010
吴撼宇 1,2,*张信军 1,2王亮平 1,2孙铁平 1,2[ ... ]张金海 1,2
作者单位
摘要
1 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
2 西北核技术研究所, 西安 710024
电子束焦斑偏离轴线中心的现象严重影响器件辐射效应实验的效率.介绍了一种简单有效的抑制电子束焦斑偏心的方法,研制了一种小尺寸不锈钢阴极,比较了不锈钢阴极和传统环形天鹅绒阴极在“强光一号”装置上的实验结果.实验结果表明对于小尺寸不锈钢阴极,最大辐射剂量位于靶面中心的概率为67%,位于35 mm圆圈内的概率为100%.相比传统环形天鹅绒阴极(最大剂量落于中心位置的概率约20%,有60%以上概率偏离中心2~3 cm)的实验统计数据,焦斑的偏心现象得到明显的抑制.
电子束 焦斑 漂移 自磁箍缩 electron-beam focus spot drift self-magnetic pinch 
强激光与粒子束
2015, 27(7): 075105
作者单位
摘要
西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
开展了百kV μs前沿脉冲作用下激光触发水开关的研究。水开关采用球板电极结构,球头轴向开激光通孔,高压极为平板电极。开关自击穿电压133 kV,抖动263 ns。实验研究了激光击穿弧长占据间隙不同比例、不同触发能量和不同触发时刻等因素对触发抖动的影响。结果表明激光触发可将抖动有效减小到30 ns以内。触发能量高于19 mJ时触发抖动与能量大小关系不大。
激光触发 水开关 抖动 击穿时延 laser-triggered water switch jitter breakdown delay time 
强激光与粒子束
2015, 27(4): 045009
作者单位
摘要
西北核技术研究所 强脉冲辐射环境模拟与效应国家重点实验室, 西安 710024
介绍了一种多间隙轨道式气体开关的结构及其自击穿实验研究结果。通过对开关放电的理论分析,并结合实验数据,获得一个适合该开关自击穿工作特性的表达式。研究结果发现,在高气压条件下,开关静态特性曲线与空气击穿的经验式曲线存在较大的差别,并且击穿电压随气压增加并不完全呈线性变化。经过对实验条件和数据的分析,认为在高气压、高电压条件下,电极表面形成的电晕可能是导致该开关静态特性曲线出现此现象的原因。由于开关的特殊结构,电极电晕不仅未起到均压的作用,反而减小了电极之间有效的绝缘距离,从而导致开关自击穿电压实验值与经验理论值的偏离。
多间隙 轨道式 气体开关 电晕 multi-gap rail gas switch corona 
强激光与粒子束
2013, 25(10): 2772
作者单位
摘要
西北核技术研究所, 强脉冲辐射模拟与效应国家重点实验室, 西安 710024
针对直线脉冲变压器对低电感、低抖动气体开关的研制需要, 采用垂直布放的平板轨道电极, 组成具有通视结构的水平间隙, 设计了一种多间隙轨道式气体开关。利用Meek击穿判据计算了单间隙自击穿电压, 实测了4个单间隙的自击穿电压及其相对标准偏差, 并根据单间隙自击穿电压, 利用概率分析方法预测了多间隙开关自击穿电压, 计算值与实测结果一致。研究表明: 开关电感最大约109 nH, 自击穿电压相对标准偏差为1.5%, 在60 kV触发电压和48%~74%欠压比下, 开关抖动0.9~2.6 ns。与圆环形电极的多间隙气体开关相比, 多间隙轨道式气体开关自击穿电压更稳定, 也更容易触发。
直线脉冲变压器 气体开关 自击穿 触发 闭合抖动 电感 linear transformer driver gas switches self-breakdown trigger close jitter inductance 
强激光与粒子束
2013, 25(4): 1059
作者单位
摘要
西北核技术研究所, 西安 710024
介绍了基于强光一号实验平台的2 MV级激光触发开关(LTGS)实验中触发系统的设计与应用情况。系统中使用了一台266 nm 四倍频Nd:YAG激光器,单次触发输出参数为80 mJ,7 ns,0.5 mrad的激光脉冲,用于触发LTGS。激光器的触发源为两台DG535脉冲发生器,联合强光一号触发信号发生装置使用,保证了激光脉冲与开关电压峰值的同步性。触发系统在自击穿电压波峰前200 ns将激光脉冲馈入开关,在充气0.2~0.3 MPa条件下均能成功触发,得到了充气0.3 MPa时触发抖动3.86 ns的结果。
激光触发开关 多级多通道开关 触发 激光电离 laser triggered gas switch multi-stage multi-channel switch trigger laser ionization 
强激光与粒子束
2012, 24(3): 643
作者单位
摘要
西北核技术研究所, 西安 710024
高功率开关是脉冲功率装置中的重要部件。介绍了2 MV激光触发多级气体开关的设计思路,给出了开关在强光一号装置上的的静态实验和触发实验结果。实验结果表明:开关的性能基本达到设计的要求;开关在低阻抗传输线中进行实验,面临传输电荷量大的问题,传输电荷越大,将导致更多的放电产物,从而使绝缘能力下降,直接影响开关的使用寿命。
激光触发 多级多通道 气体开关 自击穿 laser trigger multi-stage multi-channel gas switch self-breakdown 
强激光与粒子束
2012, 24(3): 630
作者单位
摘要
西北核技术研究所, 西安 710024
介绍了2 MV激光触发多级气体开关在强光一号加速器上的实验研究工作。给出了实验方案,激光触发信号采用轴向引入的方法,激光光路穿过二极管,沿水线轴向引入开关;分析了开关自击穿实验和触发实验的实验结果,总结了实验中出现的问题并对其原因进行了分析,提出了改进措施。 结果表明,开关最大工作电压2 MV,最大电流大于600 kA,当欠压比88.3%时,激光触发开关的平均延时34.2 ns,抖动小于3.86 ns。
激光触发 气体开关 延时 抖动 自击穿 laser trigger gas switch delay jitter self-breakdown 
强激光与粒子束
2012, 24(3): 549
作者单位
摘要
西北核技术研究所, 西安 710024
“强光一号”加速器能输出上升沿约100 ns、幅值约2 MA的电流脉冲。实验中通常采用自积分式Rogowski线圈监测负载电流。为与该线圈比对校验,研制了一种快响应、结构简单、抗电磁干扰性能较好的微分环。标定实验给出,微分环测量的响应时间约1.2 ns,频谱响应范围10 kHz~100 MHz,灵敏度为6.13×10-11(V·s)/A。其快时间响应将有助于监测与负载物理特性有关的瞬态电流变化。在加速器二极管短路状态对微分环和积分式Rogowski线圈进行了实验比对,数值积分给出的电流波形与后者基本相符,峰值偏差小于10%,表明微分环的设计合理,同时校验了电流测量的可信度。
微分环 脉冲大电流 Rogowski线圈 幅频响应 differential loop pulsed high current Rogowski coil amplitude-frequency response 
强激光与粒子束
2012, 24(3): 519
作者单位
摘要
西北核技术研究所, 西安 710024
针对12支路并联的快前沿直线脉冲变压器单级模块,给出了模块的电路结构和关键器件参数,实验获得了12只多间隙气体开关的自击穿特性和触发特性。同时,还给出了快前沿直线脉冲变压器模块输出电流的初步实验结果,工作电压150 kV时,次级短路放电电流幅值为235 kA,电流前沿88.2 ns(10%~90%)。次级带0.58 Ω负载情况下,输出电流幅值114.5 kA,电流前沿88.9 ns(10%~90%)。利用微分环测量了12只开关的触发时延分散性,结果表明100次实验开关触发时延分散性近似符合正态分布,开关触发时延分散性对输出电流的影响不大,电流幅值和前沿的标准偏差分别小于2.0%,4.0%,电流波形的畸变主要以平顶为主。
快前沿直线脉冲变压器 单级模块 多间隙气体开关 微分环 触发时延分散性 fast linear transformer driver stage single-stage module multi-gap gas switch differential loop discharge synchronization 
强激光与粒子束
2011, 23(12): 2426

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!