作者单位
摘要
1 武汉大学工业科学研究院,湖北 武汉 430072
2 上海航天精密机械研究所,上海 201600
3 湖北省计量测试技术研究院,湖北 武汉 430223
铝合金薄板激光焊接经常会出现咬边、凹陷等表面缺陷。这两种缺陷由于尺寸小、特征相似,难以通过传统视觉在线检测手段对其进行精确分类和测量。开发了一种基于深度学习缺陷分类-点云测量的在线监测系统,利用高密度的点云数据对缺陷进行识别、分类与测量,解决了上述检测难题。通过双目结构光传感器采集点云数据;利用基于区域推荐网络的卷积神经网络模型识别和定位缺陷;在识别和定位缺陷后,通过对局部缺陷区域的点云进行操作,快速测量缺陷尺寸。高密度点云数据训练的模型的识别准确率达到93%,高于传统二维视觉传感器图像训练的模型。该检测系统在线检测允许的最大焊接速度为316.87 mm/s,适用于大多数激光焊接。
激光技术 激光焊接 焊接缺陷 实时检测 高密度点云数据 深度学习 
中国激光
2024, 51(4): 0402105
作者单位
摘要
1 北方夜视技术股份有限公司, 江苏 南京 211106
2 中国科学院国家天文台空间天文与技术重点实验室, 北京 100012
3 中国科学院大学天文与空间科学学院, 北京 100049

扇形X射线微孔器件(MPOS)是一种新型的X射线聚焦器件。相较传统微孔聚焦器件,其具有集成度高、轻量化等优势,在空间X射线探测方面具有应用前景。基于MPOS聚焦理论,设计并研制出MPOS聚焦器件,其微孔内壁粗糙度为0.4~0.5 nm,微孔排列精度约为5.5%。使用点对点X射线测试平台对器件的聚焦能力进行检测,结果表明,在工作电压为5.0 kV,电流为0.1 mA条件下,聚焦焦斑形貌为清晰的类六角星形,角分辨率为7.7'@1 keV。

X射线光学 X射线微孔聚焦器件 扇形 轻量化 X射线聚焦 角分辨率 
光学学报
2022, 42(11): 1134020
黎龙辉 1,2顾燕 1,2张振 1,2,**徐昭 1,2[ ... ]刘建强 1,2
作者单位
摘要
1 北方夜视技术股份有限公司, 江苏 南京 211106
2 北方夜视科技(南京)研究院有限公司, 江苏 南京 211106
3 中国科学院国家天文台, 中国科学院空间天文与技术重点实验室, 北京 100012
4 中国科学院大学天文与空间科学学院, 北京 100049
龙虾眼X射线聚焦望远镜是未来X射线空间天文观测的重要设备之一,这种设备将成为在各种太阳风条件下研究地球空间环境的有力工具。针对龙虾眼型X射线微孔光学器件有效面积的设计与仿真工作,研究了结构参数与几何收集面积的关系,并基于菲涅耳公式计算了不同膜层材料和表面粗糙度对X射线反射率的影响。利用X射线束流测试设备并采用单光子采集模式完成了有效面积X射线的性能测试。结果表明,龙虾眼型光学器件的有效面积主要由膜层材料与内壁粗糙度共同决定,同时沉积Ir膜后在能量为1 keV的情况下有效面积能从2.15 cm 2增大至2.47 cm 2
散射 龙虾眼 X射线 聚焦成像 有效面积 
光学学报
2022, 42(9): 0934001
金戈 1张臣 2,3,*黎龙辉 1,**李臻 1[ ... ]赵冬华 2,3
作者单位
摘要
1 北方夜视技术股份有限公司, 江苏 南京 211106
2 中国科学院国家天文台,中国科学院空间天文与技术重点实验室, 北京100012
3 中国科学院大学天文与空间科学学院, 北京100049
Angel型龙虾眼X射线光学器件是一种新型X射线聚焦成像器件,具有独特的4π立体角聚焦能力和最佳有效面积-重量比,是未来最具有运用前景的X射线成像光学系统之一。依据龙虾眼的结构特性,采用微通道板方孔阵列制作技术成功研制了龙虾眼光学器件。采用Zygo干涉仪、条纹反射面型仪以及X射线束流检测设备对龙虾眼光学器件球面成型精度和聚焦成像特性进行了测试。测试结果表明:微孔光学器件的球面面型精度均方根为0.72 μm,峰谷值为2.27 μm,曲率半径约为752.3 mm。在电压为2 kV,电流为50 μA条件下,横轴和纵轴的焦斑半峰全宽的直径约为0.39 mm和0.42 mm,对应的成像角分辨率分别为3.65 arcmin和3.93 arcmin。
X射线光学 龙虾眼 光学器件 聚焦成像 角分辨率 
光学学报
2021, 41(6): 0634001
黎龙辉 1张臣 2,3,*金戈 1袁为民 2,3[ ... ]赵冬华 2,3
作者单位
摘要
1 北方夜视技术股份有限公司, 江苏 南京 211106
2 中国科学院国家天文台,中国科学院空间天文与技术重点实验室, 北京 100012
3 中国科学院大学天文与空间科学学院, 北京 100049
为了研究Angel型平面龙虾眼光学器件微孔统计特性对聚焦成像性能的影响,研发了一套点对点的真空X射线束流测试装置,采用微焦斑X射线束对研制的光学器件进行了聚焦成像测试。通过利用刀口狭缝系统对平面龙虾眼光学器件进行二维扫描测试,发现光学器件的不同区域存在不同程度的Tilt型工艺缺陷;基于蒙特卡罗软件模拟了Tilt工艺缺陷对聚焦成像的影响。实验结果表明:实验所采用的平面龙虾眼光学器件能在3650 mm焦距处将入射的X射线束会聚成清晰的十字图像,焦斑最大半峰全宽约为4.63 mm,对应的角分辨率最大约为4.36',点扩展函数的不均匀性约为33.7%。模拟结果表明:Tilt型工艺缺陷会导致中心亮斑强度下降,十字线弥散、不连续,二次焦斑畸变,成像质量变差。
光学设计 平面龙虾眼光学器件 聚焦成像 Tilt型缺陷 角分辨率 
光学学报
2021, 41(3): 0322001
张诗鲲 1黎龙辉 1,*孙建宁 1,2金戈 1[ ... ]张臣 3,4,**
作者单位
摘要
1 北方夜视技术股份有限公司, 江苏 南京 211106
2 微光夜视技术重点实验室, 陕西 西安 710065
3 中国科学院国家天文台, 中国科学院空间天文与技术重点实验室, 北京 100012
4 中国科学院大学天文与空间科学学院, 北京 100049
5 大连鉴影光学科技有限公司, 辽宁 大连 116023
研制了一套结构简单、易于操作的条纹反射测量系统,用以测试Angel型龙虾眼X射线镜片的面型。通过电荷耦合器件(CCD)相机拍摄40 mm×40 mm口径的龙虾眼镜片的条纹反射图像,计算得到了龙虾眼镜片面型的斜率误差分布,并通过积分得到了龙虾眼镜片的面型误差均方根及峰谷值,分别为0.81 μm和6.34 μm。该结果与Zygo干涉仪得到的面型分布规律大体一致。基于条纹反射方法重复测量面型得到的均方根和峰谷值的标准差分别为0.017 μm和0.11 μm,验证了条纹反射方法测量龙虾眼镜片面型的可行性。利用蒙特卡罗方法对待测龙虾眼镜片的面型误差进行X射线聚焦成像模拟,得到面型误差引起的弥散十字焦斑的半峰全宽为0.23 mm,对应的角分辨率为2.11'。该光学测量系统的建立为龙虾眼镜片的球面热成形提供了参考依据。
X射线光学 Angel型龙虾眼 条纹反射 面型误差 聚焦成像 
光学学报
2019, 39(9): 0934001
金戈 1,*黎龙辉 1张臣 2杨雪 2[ ... ]姜博文 1
作者单位
摘要
1 北方夜视技术股份有限公司南京分公司, 江苏 南京 211106
2 中国科学院国家天文台, 北京 100012
为了研究Angel型龙虾眼X射线透镜的聚焦成像特性,基于X射线全反射原理和旋转坐标系方法,建立X射线在方孔内壁的数值模型。通过求解X射线在方孔内壁的交点,得到所有光线的传输路径。为了验证模型的准确性,对透镜的焦距和传输效率分别进行实验测试和模拟。在365 mm焦距处,参与反射的X射线被会聚为十字线,中心焦斑光强最大,与模拟所得结果相符。在能量4.5 keV下,透镜镀金属Ir膜前、后的传输效率分别为1.23%和9.18%,模拟结果的传输效率分别为1.44%和10.14%。结果表明:构建的数值模型是合理的,可为龙虾眼透镜的研制提供理论基础。
X射线光学 Angel型龙虾眼 X射线全反射 传输效率 聚焦成像 
光学学报
2018, 38(9): 0934001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!