谢鹏飞 1,2雷军 1,2吕文强 1,2高松信 1,2[ ... ]王丞乾 1,2
作者单位
摘要
1 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
2 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
为降低半导体激光芯片的慢轴远场发散角,提高其慢轴方向的光束质量,设计了横向热流抑制的封装结构。利用热沉间的物理隔离,削弱了半导体激光芯片慢轴方向上的温度梯度,有效降低了半导体激光芯片慢轴方向的发散角。采用热分析模拟了不同封装结构下芯片发光区的温度分布,并对波长915 nm的窄条宽半导体激光芯片进行封装。实验结果表明,在工作电流15 A,封装在隔离槽长4 mm,脊宽120 μm刻槽热沉上的芯片,其慢轴远场发散角由12.25°降低至10.49°,相应的光参量积(BPP)由5.344 mm·mrad 降低至4.5763 mm·mrad,慢轴方向亮度提升了约5.5%。实验结果表明,横向热流抑制的封装结构可以有效地削弱半导体激光芯片慢轴方向上由热透镜效应引起的高阶模激射,从而降低其慢轴远场发散角。
半导体激光器 慢轴发散角 封装结构 横向热流抑制 diode laser slow axis divergence angle package structure lateral heat flow suppression 
强激光与粒子束
2021, 33(2): 021003
作者单位
摘要
中国工程物理研究院应用电子学研究所 高能激光科学与技术重点实验室, 四川 绵阳 621900
为了保证Nd:YAG薄片激光器的高功率、高光束质量, 需解决薄片增益介质封装后的均匀散热、低波前畸变等关键问题。分析了封装过程中薄片增益介质的热应力, 模拟了连接界面无缺陷条件下薄片增益介质的热分布, 对封装工艺技术进行改进。优化的封装技术将薄片激光增益介质与微通道冷却器连接在一起, 采用超声扫描显微镜、激光干涉仪对薄片激光器的焊接界面与增益介质表面面形进行测试。结果表明: 该封装技术实现了直径Φ80 mm的大口径YAG薄片与冷却器焊料层均匀、无空洞的界面连接, 同时减小了焊接后薄片的波前畸变, Φ60 mm口径内面形畸变PV值小于1 μm, 均方根RMS值小于0.15 μm。该技术封装的单模块Nd:YAG薄片激光器输出功率达到2.3 kW。
薄片激光增益介质 封装 热均匀性 波前畸变 thin disk laser gain medium packaging thermal homogeneity wave-front distortion 
红外与激光工程
2017, 46(12): 1205003
作者单位
摘要
中国工程物理研究院 应用电子学研究所, 高能激光科学与技术重点实验室, 四川 绵阳 621900
为实现大尺寸、高储能的Nd: YAG板条激光增益介质模块的高可靠性工作,必须找到合适的封装工艺解决大尺寸无空洞、低热阻界面连接问题和界面低应力、低透射波前畸变问题。在充分了解板条激光增益介质和冷却单元的特性后,选择了延展性好的铟作为焊料,实验得到最佳焊料层厚度,通过改进封装工艺的钎焊技术将这两部分可靠地连接在一起。改进的封装工艺实现了钎焊面积大于40 cm2,空洞率小于0.5%,最大空洞面积小于1 mm2的技术指标,工艺重复性大于90%。通过对焊料层的优化实现了尺寸为150.2 mm×30 mm×2.5 mm板条激光增益介质静态透射波前畸变小于1 μm,成品率优于80%,静态透射波前畸变小于1.5 μm的模块成品率接近100%的技术指标。采用改进封装工艺焊接的单模块Nd: YAG板条激光器稳定输出功率达到4000 W。
板条激光增益介质 封装 无空洞 波前畸变 slab laser gain medium packaging voids free wave-front distortion 
强激光与粒子束
2016, 28(9): 091002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!