作者单位
摘要
1 中南大学自动化学院, 湖南 长沙 410083
2 湖南人文科技学院信息学院, 湖南 娄底 417000
鉴于2次谐波外的其他谐波成分中依然蕴含着浓度信息,提出了基于2次+4次谐波、2次+4次+6次谐波、2次+4次+6次+8次谐波的三种浓度反演方法,推导出各自的气体浓度反演表达式,评估了所提反演方式对应的最佳调制度,分析了气体浓度检测系统中噪声干扰的主要存在形式,在理论上证明了所提出的联合多次谐波分析方法可以显著提升噪声抑制能力,并给出了用于参考的实验方案。仿真结果表明:与基于2次谐波峰值的浓度反演方法相比,2次+4次谐波可以使浓度反演误差降低31.38%,2次+4次+6次谐波可以使浓度反演误差降低42.03%,2次+4次+6次+8次谐波可以使浓度反演误差降低47.45%。
光谱学 谐波联合分析 可调谐半导体激光吸收光谱 洛伦兹线型展开 气体浓度反演 
光学学报
2019, 39(10): 1030001
作者单位
摘要
1 湖南人文科技学院信息学院, 湖南 娄底 417000
2 中南大学信息科学与工程学院, 湖南 长沙 410083
3 楚天科技股份有限公司研发中心, 湖南 长沙 410600
构建了一个开放单光路短光程激光检测平台,提出了一种基于线型的Levenberg-Marquardt(L-M)算法,以洛伦兹线型和高斯线型的二阶导数作为L-M算法的拟合函数,对氧气体积分数为0%~21%的样本进行校正。结果表明:在基于洛伦兹线型的L-M算法校正中,氧气含量-二次谐波峰值的拟合系数最高,为0.9995;以洛伦兹线型为优化依据,对含氧气体积分数为1%的样品进行了多次测量,校正处理前后预测的氧气体积分数最大偏差分别为0.38%和0.22%,预测的均方根误差分别为0.25%和0.16%。
光谱学 基线校正 Levenberg-Marquardt算法 氧气含量 波长调制光谱 
中国激光
2019, 46(2): 0211001
作者单位
摘要
1 中南大学信息科学与工程学院, 湖南 长沙 410083
2 湖南人文科技学院信息学院, 湖南 娄底 417000
3 楚天科技股份有限公司, 湖南 长沙 410600
应用可调谐半导体激光吸收光谱(TDLAS)技术开放单光路短光程检测西林瓶内氧气浓度, 因玻璃瓶壁造成入射光多次反射和透射, 形成多光束干涉, 严重影响信号波形和检测精度。 本文提出了一种改变激光入射角度来抑制瓶壁光学干扰的方法, 理论分析了入射角度对透射光强分布的影响, 详细推导了使两相干光束叠加部分在接收端探测范围之外的入射角度计算公式, 并根据现场参数得到理论最佳入射角度。 对氧气浓度1%的样瓶进行多次测量, 将二次谐波信号峰值的平均值作为信号, 峰值的标准差作为噪声, 以信噪比(signal to noise radio, SNR)最大作为系统入射角角度的优化指标, 实验获得系统的实际最佳入射角度。 与决定系数较高的入射角度进行浓度预测对比, 交互验证后的最小二乘拟合结果显示: 相关系数分别为0995 9和0988 9, 前者相比后者提高了07%, 预测的均方根误差(root mean square errors of prediction, RMSEP)分别是0003 1和0005 3, 前者相比后者降低了415%, 说明本文方法所确定的最佳入射角, 能有效抑制玻璃瓶壁引起的多光束干涉影响, 改善系统检测精度。Spectroscopy
可调谐半导体激光吸收光谱 二次谐波 光学噪声 多光束干涉 氧气浓度 Tunable diode laser absorption spectroscopy Second harmonic signal Optical noise Multi-beam interference Oxygen concentration 
光谱学与光谱分析
2018, 38(2): 372
作者单位
摘要
1 中南大学信息科学与工程学院, 湖南 长沙 410083
2 湖南人文科技学院信息学院, 湖南 娄底 417000
应用激光波长调制光谱(WMS)技术, 建立了一种开放光路短光程检测玻璃药瓶内氧气含量的方法。 选择氧气分子位于760.885(13 142.58 cm-1)的吸收谱线, 通过多次调试优化了系统相关参数, 给出了实时扣背景及实时谱线校正等数据处理的方法和步骤。 采集七种不同氧气含量的玻璃药瓶样本, 获取相应的二次谐波信号, 分别建立二次谐波峰值、 半高谱峰面积与浓度的线性回归方程进行定量预测。 实验结果表明, 其拟合系数分别为0.996 6和0.997 8, 后者相比前者的标定方法提高了0.12%。 采用完全交互验证的方法来评价两个模型的预测精度, 其预测的均方根误差(RMSEP)分别是0.003 1和0.002 0, 后者相比前者降低了37.69%。 对浓度是4%的气体样品, 比较不同时间的20次测量结果, 标准差分别为0.002 2和0.001 6, 后者相比前者降低了27.3%, 同时其测量灵敏度分别为0.198%和0.097%, 后者相比前者的灵敏度提高了约51%。 证明了该系统及数据处理方法对玻璃药瓶内氧气含量检测是可行的, 且利用半高谱峰面积更丰富的幅值信息来反演气体浓度可以降低波峰失真影响, 检测精度更高, 稳定性更好。
波长调制光谱 二次谐波 半高谱峰面积 氧气浓度 Wavelength modulation spectroscopy Second harmonic signal Peak area at half maximum Oxygen concentration 
光谱学与光谱分析
2017, 37(10): 3133
作者单位
摘要
中南大学信息科学与工程学院, 湖南 长沙 410083
可调谐激光二极管吸收光谱(TDLAS)技术的成熟和快速非接触气体浓度测量的优点, 十分适合用于对封装西林药瓶内残留氧气进行浓度检测。 采用TDLAS技术对封装西林药瓶内残留氧气进行浓度检测, 检测系统的光路经过空气和玻璃药瓶, 玻璃瓶壁对激光的散射和衰减是检测系统的主要干扰, 给二次谐波信号的稳定性带来了很大影响。 设计和搭建了基于TDLAS的封装西林药瓶残氧量检测系统。 针对从系统中提取出的二次谐波信号, 提出了一种基于小波变换的基线消除和噪声滤除方法, 解决在残留氧气浓度检测过程中基线漂移和噪声干扰问题, 克服玻璃瓶壁对二次谐波信号的干扰, 效果明显。 选用“sym6”小波, 将实验测得的信号进行五层小波分解, 根据每一层小波分解得到的低频分量求出相应的基线斜率, 对五个基线斜率进行加权平均得到原始信号的基线斜率。 由求得的基线斜率, 对原始信号经过去基线处理, 再进行小波分解和软阈值处理后得到重构信号。 对氧气浓度为21%的西林瓶的测量结果表明, 处理后谐波信号和理论信号之间的相对误差由处理前的1.26%下降到了0.12%, 证明了此方法可以很好地解决在残留氧气浓度检测过程中基线漂移和噪声干扰问题, 克服玻璃瓶壁对二次谐波信号的干扰, 为氧气浓度测量提供很高质量的信号。
可调谐激光吸收光谱(TDLAS) 西林药瓶残留氧气检测 小波变换 基线校正 去噪 Tunable diode laser absorption spectroscopy(TDLAS) Xilin bottle residue oxygen detection Wavelet transform Baseline correction Denoising 
光谱学与光谱分析
2017, 37(8): 2598

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!