作者单位
摘要
1 山东科技大学 海洋科学与工程学院 山东 青岛 266590
2 青岛海洋科学与技术试点国家实验室 山东 青岛 266200
金属-介质-金属结构的超表面窄带吸收器应用广泛, 但金属固有的欧姆损耗会导致吸收峰的半高全宽偏大, 影响吸收器在传感领域的应用。本文用介质顶层结构取代超表面的金属顶层结构, 设计了一种介质-介质-金属结构的混合超表面窄带吸收器。吸收器由Al2O3倒圆台顶层阵列、SiO2中间介质层以及银膜基底组成, 通过有限元法对吸收器的吸收光谱进行仿真, 结果显示吸收器在可见光波段产生最大吸收率为99.88%、半高全宽为2.26 nm的吸收峰。通过与相同尺寸参数的金属-介质-金属超表面窄带吸收器进行吸收光谱和吸收峰处电场分布的对比, 分析两种结构不同的吸收原理。同时对混合超表面窄带吸收器尺寸参数对吸收峰的影响, 吸收器对外界折射率的传感性能进行仿真和分析, 为该结构吸收器的可调性和稳定性, 以及在折射率传感上的应用提供参考。
混合超表面 窄带吸收器 有限元法 吸收光谱 折射率传感 hybrid metasurface narrowband absorber finite element method absorption spectrum refractive index sensing 
量子光学学报
2022, 28(4): 368
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 天津大学微光机电系统技术教育部重点实验室, 天津 300072
3 青岛海洋科学与技术试点国家实验室, 山东 青岛 266200
4 山东科技大学海洋科学与工程学院, 山东 青岛 266000
高能量脉冲激光水下激发声源信号具有脉宽窄、频带宽的特点, 激光能量在允许的范围内波动时, 激光声信号频域能量分布保持稳定。利用小波包技术对激光声信号在目标物上的回波进行分析, 提取声目标特征信息, 可以达到目标识别的目的。选用db4小波基, 对激光声信号进行4级小波包分解; 将分解后的信号进行能量特征提取, 分析声信号频域能量分布特征; 为了获得激光声信号在目标物上反射前后的时域特征变化情况, 对分解后不同节点信号进行重构, 进行重构信号与原始信号的相关分析, 确定信号的有效滤波频段。数据分析表明, 小波包分析方法可有效地对激光声信号的瞬态特性进行分析, 根据能量特征值选取信号滤波频段可对信号进行有效滤波, 实现了水下不同目标物的分类识别, 可为激光致声水下目标探测研究提供参考。
激光水下致声 小波包分析 能量特征提取 小波重构 相关分析 laser induced acoustic underwater wavelet packet analysis energy feature extraction wavelet reconstruction correlation analysis 
应用激光
2021, 41(5): 1039
作者单位
摘要
1 青岛海洋科学与技术试点国家实验室, 山东 青岛 266200
2 天津大学精密仪器与光电子工程学院, 天津 300072
结合实测的激光致声信号时频域特性,提出了一种基于频域能量检测器的新型水下脉冲激光声信号检测方法,并分析了不同频率激光声信号的衰减特性。针对远距离条件下高频信号衰减严重的问题,在频域能量检测器的前端添加了预补偿滤波器。蒙特卡罗仿真结果表明,带预补偿滤波器的频域能量检测器可以有效提高远距离下激光声信号的检测性能。
激光声 信号检测 频域能量检测 水声通信 
中国激光
2019, 46(7): 0701008
张超 1,2,3,*徐德刚 1,2,3,*石嘉 1,2,3钟凯 1,2,3[ ... ]姚建铨 1,2
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 天津大学光电信息技术科学教育部重点实验室, 天津 300072
3 青岛海洋科学与技术试点国家实验室海洋观测与探测联合实验室, 山东 青岛 266237
4 中交四航工程研究院有限公司, 广东 广州 510230
5 水工构造物耐久性技术交通行业重点实验室, 广东 广州 510230
报道了一种基于光纤激光器内腔调制的低探测极限折射率传感系统。将基于单模-无芯-单模的全光纤多模干涉结构作为损耗调制器件插入光纤激光器环形腔内,采用激光器内腔调制技术获得了高灵敏度、高信噪比、窄半峰全宽的传感信号,从而实现了低探测极限的折射率测量。系统的折射率探测极限可达7.3×10 -7 RIU。该传感系统具有输出稳定、温度交叉敏感小的特点,在高精度生物化学传感、海洋环境监测等领域具有一定的应用潜力。
传感器 折射率传感系统 探测极限 内腔调制 光纤激光器 
中国激光
2018, 45(12): 1210003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!