作者单位
摘要
1 太原理工大学新型传感器与智能控制教育部/山西省重点实验室,山西 太原 030024
2 中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室,吉林 长春 130033
3 广东工业大学广东省信息光子技术重点实验室,广东 广州 510006
4 中国工程物理研究院应用电子学研究所,四川 绵阳 621900
提出了一种基于多模光纤模间色散的无时延特征混沌产生方案。在多模光纤长度为4.4 km、芯径为62.5 μm、反馈强度为0.1的条件下,实验获得了无时延特征的混沌信号。进一步理论分析了多模光纤的纤芯直径、相对偏移、长度对混沌光模场的影响,结果显示:随着纤芯直径和相对偏移的增大,模式数量逐渐增多,模场分布变复杂;随着光纤长度的增加,模式分离程度(即模间色散)增大。最终探明了多模光纤相对偏移、反馈强度、长度对时延特征的抑制规律。结果表明,在与实验相同的纤芯直径和反馈强度下,消除时延特征的多模光纤的临界长度为1 km。
光纤光学 半导体激光器 混沌激光 时延特征 多模光纤 
中国激光
2024, 51(6): 0606002
王岩山 1,2彭万敬 1,2王珏 1,2余鸿铭 1,2[ ... ]唐淳 1,2,***
作者单位
摘要
1 中国工程物理研究院应用电子学研究所,四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室,四川 绵阳 621900
3 中国工程物理研究院研究生部,北京 100088
中国激光
2023, 50(24): 2416002
王岩山 1,2彭万敬 1,2王珏 1,2杨小波 1,2[ ... ]唐淳 1,2
作者单位
摘要
1 中国工程物理研究院 应用电子学研究所,四川 绵阳 621900
2 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
3 中国工程物理研究院 研究生部,北京 100088
强激光与粒子束
2023, 35(8): 089901
王岩山 1,2彭万敬 1,2王珏 1,2杨小波 1,2[ ... ]唐淳 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所,四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室,四川 绵阳 621900
中国激光
2022, 49(18): 1816003
王金川 1,2,3李密 1,2杜佳林 1,2汪丹 1,2[ ... ]高清松 1,2
作者单位
摘要
1 中国工程物理研究院 应用电子学研究所,四川 绵阳 612900
2 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 612900
3 中国工程物理研究院 研究生院,北京 100088
设计了一种高倍率的固体皮秒脉冲激光放大器,采用Nd:YAG板条作为激光增益介质。借助板条结构的角度选通结构,搭建了板条五通放大系统,实现了对注入皮秒脉冲激光的高倍率放大。种子源工作在脉冲模式,放大器泵浦源在连续模式工作。皮秒光纤激光器可以在不同的重复频率下工作,脉冲宽度为13.4 ps。种子光经过隔离和耦合系统之后,注入板条的单脉冲能量为25 nJ。当种子源工作重复频率为24.46 MHz时,板条放大器输出平均功率377 W,单脉冲能量15.5 μJ;当种子源工作重复频率为49.8 kHz时,板条放大器输出平均功率89 W,单脉冲能量1.8 mJ,峰值功率为134 MW,放大倍率达到7.2×104
激光器 皮秒激光 固体激光器 高倍率 五通放大 laser picosecond laser solid-state laser high magnification five-pass amplification 
强激光与粒子束
2022, 34(6): 061001
查从文 1,2,3李腾龙 1,2孙殷宏 1,2,*王岩山 1,2[ ... ]张凯 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
3 中国工程物理研究院研究生院, 四川 绵阳 621900
窄线宽高功率光纤激光器在相干合成及光谱合成等**与工业领域有着广泛的应用。最近, 中国工程物理研究院应用电子学研究所基于25/400 μm光纤, 采用双端抽运及高功率种子注入等手段控制放大过程中的模式不稳定(MI)效应, 利用基于白噪声源的相位调制技术有效抑制受激布里渊散射和受激拉曼散射, 成功实现了3.5 kW窄线宽光纤激光的放大输出, 实验装置如图1(a)所示。如图1(b)所示, 当主放抽运功率达到3450 W时, 激光器的输出功率为3045 W, 此时回光反射率约为0.01%, 光-光转换效率为77.5%, 未观测到MI效应, 光束质量M2≈1.5。光谱半峰全宽(FWHM)为0.18 nm, 二阶矩线宽均方根(RMS)为0.17 nm。激光输出信噪比大于47 dB, 如图2(a)、(b)所示。激光器在3 kW输出功率下, 连续工作达15 min, 如图2(c)所示, 功率波动峰谷值为1.6%。将种子源线宽继续展宽到0.38 nm, 得到激光器输出的最高功率为3525 W, 光-光转换效率下降至71.5%, M2下降至1.9, 且观测到明显的MI效应。进一步优化放大器结构以提升MI阈值将是后续亟需开展的工作。
中国激光
2018, 45(5): 0515001
马毅 1,2,*颜宏 1,2孙殷宏 1,2彭万敬 1,2[ ... ]张凯 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
基于双多层电介质膜(MLD)光栅色散补偿构型设计的光谱合成激光器(SBC)既实现了多路光纤激光高光束质量共孔径合束输出, 又降低了单路光纤激光的线宽要求, 逐渐成为多纤光谱合成的重要技术途径之一。介绍了基于双MLD光栅光谱合成的基本原理, 简要分析了其涉及的关键技术。回顾了高功率可合成窄线宽光纤激光器、高功率高效率短波长光纤激光器、大色散高衍射效率MLD光栅和高集成度密集组束等主要关键技术的研究进展。介绍了中国工程物理研究院应用电子学研究所在基于双MLD光栅光谱合成关键技术研究方面的最新研究进展。对双MLD光栅光谱合成光源的发展潜力进行了展望。
光纤激光器 光谱合成 双MLD光栅 窄线宽 密集组束 fiber laser spectral beam combining dual-MLD-grating narrow linewidth dense combining 
红外与激光工程
2018, 47(1): 0103002
李腾龙 1,2,*查从文 1,2彭万敬 1,2李阳 1[ ... ]唐淳 1,2
作者单位
摘要
1 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
2 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
随机光纤激光器(RFL)作为主振荡功率光纤放大器(MOPFA)的种子源, 在放大过程中具有线宽保持特性, 在高功率窄谱光纤激光及光谱组束领域有广阔的应用前景。中国工程物理研究院应用电子学研究所实现了2 kW窄光谱随机光纤激光放大输出。
中国激光
2017, 44(4): 0415003
李腾龙 1,2,*李阳 1彭万敬 1,2王小军 1[ ... ]张凯 1,2
作者单位
摘要
1 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
2 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
搭建了以掺镱光纤作为增益、单模光纤提供随机分布反馈的随机光纤激光器,最大输出功率为5.1 W,半峰全宽(FWHM)为0.34 nm。以该激光器作为种子源,通过全光纤主振荡功率放大实现了1102 W的激光功率输出,光光效率为78.5%。放大过程中输出激光的FWHM基本保持不变,均方根(RMS)谱宽为1.24 nm。为进一步压缩随机光纤种子源的光谱线宽,利用窄谱光纤光栅对随机光纤种子源进行滤波,然后再进行放大,最大输出功率为1093 W,FWHM为0.61 nm,均方根谱宽为0.92 nm。放大过程中未观察到明显的放大自发辐射与受激布里渊散射现象。
激光器 光纤激光器 随机激光 掺镱光纤放大器 
中国激光
2017, 44(2): 0201015
马毅 1,2颜宏 1,2,*彭万敬 1,2王小军 2,3[ ... ]张凯 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所, 四川 绵阳 621900
2 中国工程物理研究院高能激光科学与技术重点实验室, 四川 绵阳 621900
3 北京应用物理与计算数学研究所, 北京 100088
4 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
5 清华大学工程物理系, 北京 100084
理论和实验研究了一种基于双多层电介质膜(MLD)光栅色散补偿构型设计的光谱合成激光器,该激光器既实现了多路光纤激光高光束质量共孔径光谱合成输出,也降低了单路光纤激光的线宽要求。优化了该激光器的光束质量退化分析模型,分析了激光波长、光栅色散和光谱结构对光谱合成输出光束质量的影响,实验研究了不同功率水平下的光谱合成输出光束质量变化特性,获得了最大输出功率为9.6 kW的高光束质量共孔径合成输出,光束质量M2为2.9,合成效率达到92.0%。通过进一步压缩每路光纤激光的线宽并提升其功率或增加合成路数,可以获得更高功率和更高光束质量水平的共孔径激光输出。
激光器 光纤激光器 光谱合成 双光栅 高光束质量 
中国激光
2016, 43(9): 0901009

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!