作者单位
摘要
1 南京农业大学国家信息农业工程技术中心, 江苏 南京 210095农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
2 河南农业大学信息与管理科学学院, 河南 郑州 450002
3 农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
马铃薯是继水稻、 小麦、 玉米之后的一种重要的粮食作物, 其优化种植和生产对于保障粮食安全具有重要的意义。 作物的地面生物量(AGB)被广泛认为与作物的生长状态密切相关, 常常被直接用来参与作物产量预测和健康状态参数评估。 现有的研究表明, 遥感植被指数在中高作物覆盖度时会丧失对作物参数的敏感性, 即“饱和现象”, 这制约了作物生长中后期AGB的准确监测。 采用了一个新型垂直生长作物AGB估算模型(VGC-AGB)结合高光谱遥感开展马铃薯多生长阶段的AGB估算研究。 针对多生长时期遥感光谱指数开展作物生物量监测中存在的“饱和问题”, VGC-AGB定义了叶片干物质含量(Cm)和垂直器官干物质含量(Csm)2个参数, 分别描述马铃薯叶片和茎的平均干物质含量, 并通过叶面积指数(LAI)×Cm计算叶片的地上生物量(AGBl), 通过种植密度(Cd)、 马铃薯株高(Ch)和Csm的乘积, 即Cd×Ch×Csm计算垂直器官的地上生物量(AGBv)。 基于国家精准农业研究示范基地2019年马铃薯田间实验, 分别获取了马铃薯4个关键生长时期的地面ASD高光谱数据、 实测株高、 AGB和LAI数据等, 并利用高光谱反射率数据构建了高光谱特征参数, 分别对比了(1)高光谱特征参数+株高, (2)地面测量参数+VGC-AGB模型和(3)高光谱特征参数+VGC-AGB模型的3种马铃薯AGB估算模型的性能。 结果表明, 与传统的高光谱遥感植被指数+株高的AGB估算方法相比, 新型VGC-AGB模型结合高光谱遥感数据可以提供更高性能的马铃薯AGBl、 AGBv和总AGB估算结果, 该方法可为马铃薯AGB的快速无损监测提供技术支撑。
VGC-AGB模型 高光谱遥感 马铃薯 地面生物量 VGC-AGB model Hyperspectral remote sensing Potato Aboveground biomass (AGB) 
光谱学与光谱分析
2023, 43(9): 2876
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097南京农业大学国家信息农业工程技术中心, 江苏 南京 210095
2 农业部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
3 河南工程学院土木工程学院, 河南 郑州 451191
作物氮含量影响作物的生长状况, 合适的施氮量可以促进作物生长和提高作物产量, 因此准确、 快速地监测作物的氮含量十分必要。 旨在探索将无人机成像高光谱获取的植被指数和光谱特征参数相结合以提高冬小麦关键生育期氮含量估算精度的潜力。 首先, 以无人机为遥感平台, 搭载高光谱传感器获取了冬小麦拔节期、 挑旗期、 开花期和灌浆期4个主要生育期的高光谱遥感影像, 并实测了各生育期的氮含量数据。 其次, 基于预处理后的高光谱影像, 提取冬小麦各生育期的冠层反射率数据, 并构造能较好反映作物氮素营养状况的12种植被指数和12种光谱特征参数。 然后, 计算了各光谱参数与冬小麦氮含量的相关性, 并筛选出各生育期与氮含量相关性较强的植被指数和光谱特征参数; 最后, 利用逐步回归分析(SWR)构建基于植被指数、 植被指数结合光谱特征参数的氮含量估算模型。 结果显示: (1)选取的大部分植被指数和光谱特征参数与冬小麦氮含量都有较高的相关性。 其中, 植被指数的相关性高于光谱特征参数; (2)基于单个植被指数或光谱特征参数估算冬小麦虽然可行, 但精度还有待进一步提高; (3)与单一植被指数或光谱特征参数相比, 植被指数结合光谱特征变量利用SWR方法构建的氮含量估算模型的精度和稳定性更高(拔节期: 建模R2=0.64, RMSE=24.68%, NRMSE=7.96%, 验证R2=0.77, RMSE=23.13%, NRMSE=7.81%; 挑旗期: 建模R2=0.81, RMSE=15.79%, NRMSE=7.41%, 验证R2=0.84, RMSE=15.10%, NRMSE=7.08%; 开花期: 建模R2=0.78, RMSE=9.88%, NRMSE=5.66%, 验证R2=0.85, RMSE=9.12%, NRMSE=4.76%; 灌浆期: 建模R2=0.49, RMSE=13.68%, NRMSE=9.85%, 验证R2=0.40, RMSE=18.29%, NRMSE=14.73%)。 研究结果表明, 结合无人机成像高光谱获取的植被指数和光谱特征参数构建的冬小麦氮含量估算模型精度和稳定性较高, 研究结果可为冬小麦氮含量的空间分布和精准管理提供参考。
无人机 冬小麦 高光谱 氮含量 逐步回归 光谱特征参数 Unmanned aerial vehicle Winter wheat Hyperspectral Nitrogen content Stepwise regression Spectral feature parameters 
光谱学与光谱分析
2023, 43(10): 3239
作者单位
摘要
1 农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097国家农业信息化工程技术研究中心, 北京 100097辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
2 农业农村部农业遥感机理与定量遥感重点实验室,北京市农林科学院信息技术研究中心, 北京 100097 南京农业大学国家信息农业工程技术中心, 江苏 南京 210095 国家农业信息化工程技术研究中心, 北京 100097
3 农业农村部农业遥感机理与定量遥感重点实验室江苏 南京 210095 国家农业信息化工程技术研究中心, 北京 100097中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
4 农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097国家农业信息化工程技术研究中心,北京 100097
5 农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097国家农业信息化工程技术研究中心, 北京 100097
6 农业农村部农业遥感机理与定量遥感重点实验室江苏 南京 210095国家农业信息化工程技术研究中心, 北京 100097
7 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
植株氮含量(PNC)是评价作物长势和营养状况的重要指标, 快速准确获取作物的PNC信息可为农田管理策略的制定与实施提供重要依据。 已有研究表明, 仅采用影像的光谱信息估算作物的PNC存在饱和现象, 该研究尝试采用植被指数(VIs)结合二维离散小波分解技术(DWT)提取的多个尺度的高频信息(HFI)构建一种光谱空间特征(VIs+HFI), 探究VIs、 HFI和VIs+HFI估算PNC的能力。 首先, 以无人机为遥感平台获取马铃薯现蕾期、 块茎形成期、 块茎增长期、 淀粉积累期和成熟期5个氮营养关键生育期的数码影像并实测各生育期的PNC数据。 其次, 基于预处理的无人机影像, 提取各生育期冠层的光谱信息构建VIs, 并采用DWT提取各生育期1~5尺度的HFI。 然后, 将各生育期提取的VIs和HFI与马铃薯PNC进行相关性分析, 分别筛选出相关系数绝对值较大的前7个VIs和前10个HFI。 为降低共线性对实验结果的影响, 根据KMO检验结果对筛选的HFI进行主成分分析(PCA)降维处理。 最后, 采用岭回归和极限学习机(ELM) 2种方法分别以VIs、 HFI主成分和VIs+HFI主成分为模型变量构建马铃薯各生育期的PNC估算模型, 并进行评估。 结果表明: (1)马铃薯各生育期, 1~5尺度的HFI对估算PNC均有贡献。 (2)以VIs+HFI为模型变量构建的马铃薯PNC估算模型的精度和稳定性高于单一VIs和HFI。 (3)马铃薯各生育期, 以岭回归方法构建的PNC估算模型优于ELM方法。 其中, 以VIs+HFI为模型变量构建的PNC估算模型效果最优, 5个生育期的建模R2分别为0.833、 0.764、 0.791、 0.664和0.435, RMSE分别为0.332%、 0.297%、 0.275%、 0.286%和0.396%; NRMSE分别为9.113%、 9.425%、 10.336%、 9.547%和15.166%, 该研究可为马铃薯氮营养状况的实时高效监测提供一种新的技术支撑。
无人机 马铃薯 植株氮含量 植被指数 高频信息 Unmanned aerial vehicle Potato Plantnitrogen content Vegetation indices High frequency information 
光谱学与光谱分析
2023, 43(5): 1532
作者单位
摘要
1 农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097国家农业信息化工程技术研究中心, 北京 100097辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
2 农业农村部农业遥感机理与定量遥感重点实验室,北京市农林科学院信息技术研究中心, 北京 100097 南京农业大学国家信息农业工程技术中心, 江苏 南京 210095 国家农业信息化工程技术研究中心, 北京 100097
3 农业农村部农业遥感机理与定量遥感重点实验室江苏 南京 210095 国家农业信息化工程技术研究中心, 北京 100097中国农业大学现代精细农业系统集成研究教育部重点实验室, 北京 100083
4 农业农村部农业遥感机理与定量遥感重点实验室江苏 南京 210095国家农业信息化工程技术研究中心, 北京 100097
5 辽宁工程技术大学测绘与地理科学学院, 辽宁 阜新 123000
植株氮含量(PNC)是评价作物长势和氮营养状况的重要指标, 因此, 准确高效地获取PNC信息, 对动态监测马铃薯长势及精准施控氮肥具有重要意义。 首先于马铃薯现蕾期、 块茎形成期、 块茎增长期、 淀粉积累期和成熟期获取无人机高光谱影像, 并基于预处理的影像提取5个生育期冠层的原始光谱和一阶微分光谱; 其次将提取的冠层光谱与马铃薯PNC进行相关性分析, 筛选出PNC的敏感波长; 然后分别利用灰度共生矩阵和1~3阶颜色矩, 提取冠层原始光谱特征波长处高光谱图像的纹理和颜色2种图像特征, 并将提取的特征与马铃薯PNC进行相关性分析, 筛选出相关性较高的前5个图像特征; 最后分别基于光谱特征、 图像特征和图谱融合特征利用弹性网络回归(ENR)、 贝叶斯线性回归(BLR)和极限学习机(ELM) 3种方法建立马铃薯PNC估算模型。 结果表明: (1)马铃薯5个生育期的冠层光谱特征波长存在差异, 但多数位于可见光区域。 (2)冠层原始光谱特征波长图像的纹理和颜色特征与PNC的相关性较高, 且现蕾期到淀粉积累期的相关性明显高于成熟期。 (3)基于单一光谱特征和单一图像特征构建的马铃薯PNC估算模型在现蕾期到淀粉积累期效果较好, 成熟期效果较差。 (4)现蕾期到淀粉积累期, 基于图谱融合特征的马铃薯PNC估算效果明显优于单一光谱特征和单一图像特征。 (5)马铃薯各生育期, 基于同种变量利用ENR构建的PNC估算模型效果较好, BLR次之, ELM较差。 其中, 以图谱融合特征为模型变量, 利用ENR构建的PNC估算模型精度和稳定性最好, 5个生育期的建模R2分别为0.91、 0.75、 0.82、 0.77和0.69, RMSE分别为0.24%、 0.31%、 0.26%、 0.22%和0.29%, NRMSE分别为6.59%、 9.79%、 9.58%、 7.87%和11.03%。 该研究可为马铃薯的氮营养监测提供一种快捷高效的技术手段。
无人机 马铃薯 高光谱 图像特征 植株氮含量 UAV Potato Hyperspectral Image features Plant nitrogen content 
光谱学与光谱分析
2023, 43(5): 1524
作者单位
摘要
1 农业农村部农业遥感机理与定量遥感重点实验室, 北京市农林科学院信息技术研究中心, 北京 100097
3 河南工程学院土木工程学院, 河南 郑州 451191
叶绿素含量(SPAD)是作物长势评价的重要指标, 可以监测农作物的生长状况, 对农业管理至关重要, 因此快速、 准确地估算SPAD具有重要意义。 以冬小麦为研究对象, 利用无人机高光谱获取了拔节期、 挑旗期和开花期的影像数据, 获取植被指数和红边参数, 研究植被指数与红边参数估算SPAD的能力。 先将植被指数与红边参数分别与不同生育期的SPAD进行相关性分析, 再基于植被指数、 植被指数结合红边参数, 通过偏最小二乘回归(PLSR)方法估算SPAD, 最后制作SPAD分布图验证模型的有效性。 结果表明, (1)大部分植被指数与红边参数在3个主要生育期与SPAD相关性均达到极显著水平(0.01显著); (2)单个植被指数构建的SPAD估算模型中, LCI表现最好(R2=0.56, RMSE=2.96, NRMSE=8.14%), 红边参数中Dr/Drmin表现最好(R2=0.49, RMSE=3.18, NRMSE=8.76%); (3)基于植被指数结合红边参数构建的SPAD估算模型效果最佳, 优于仅基于植被指数构建的SPAD估算模型, 同时, 随着生育期推移, 两种模型均在开花期达到最高精度, R2分别为0.73和0.78, RMSE分别为2.49和2.22, NRMSE分别为5.57%和4.95%。 因此, 基于植被指数结合红边参数, 并使用PLSR方法可以更好地估算SPAD, 可以为基于无人机遥感的SPAD监测提供一种新的方法, 也可为农业管理提供参考。
冬小麦 叶绿素含量 植被指数 红边参数 偏最小二乘回归 Winter wheat Chlorophyll content Vegetation index Red edge parameter Partial least squares regression 
光谱学与光谱分析
2022, 42(11): 3575
樊意广 1,3,5冯海宽 1,2,3刘杨 1,3,4边明博 1,3[ ... ]钱建国 5
作者单位
摘要
1 农业农村部农业遥感机理与定量遥感重点实验室,北京市农林科学院信息技术研究中心,北京 100097
2 南京农业大学国家信息农业工程技术中心,江苏 南京 210095
3 国家农业信息化工程技术研究中心,北京 100097
4 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京 100083
5 辽宁工程技术大学测绘与地理科学学院,辽宁 阜新 123000
快速准确地获取作物的植株氮含量(PNC)信息, 是农业精细化管理的关键和数字农业发展的研究热点。 近年来, 随着无人机和传感器技术的发展, 利用多种传感器信息监测作物理化参数逐渐引起国内外学者的关注。 以马铃薯为研究对象, 首先, 基于无人机获取了马铃薯现蕾期、 块茎形成期、 块茎增长期、 淀粉积累期和成熟期的高光谱影像和数码影像, 同时采集各生育期的地面数码影像, 并实测了株高(H)、 PNC和11个地面控制点(GCPs)的三维空间坐标。 其次, 利用无人机数码影像结合GCPs生成试验区域的数字表面模型(DSM), 分别从无人机数码影像和DSM中提取马铃薯的地面覆盖度(VCuav)和株高(Hdsm), 并利用地面数码影像计算的覆盖度(VC)和实测H验证提取的VCuavHdsm的精度。 然后, 根据高光谱反射率数据计算绿边参数(GEPs), 构造GEPs×Hdsm×VCuav, GEPs/(1+VCuav), (GEPs+VCuavHdsm和GEPs/(1+Hdsm) 4种融合特征参数(FFPs), 对高光谱影像信息和数码影像信息进行融合。 最后, 将各生育期提取的GEPs和构造的FFPs分别与PNC作相关性分析, 筛选最优绿边参数(OGEP)和最优融合特征参数(OFFP)构建5个生育期的PNC线性估算模型, 并根据相关性较高的GEPs和FFPs利用偏最小二乘(PLSR)和人工神经网络(ANN) 2种回归方法构建PNC的多参数估算模型, 结果表明: (1)基于无人机数码影像提取的HdsmVCuav具有较高的精度, 可以代替实测HVC估算作物理化参数。 (2)与GEPs相比, 前4个生育期, 构造的大部分FFPs与PNC的相关性更高, 能更好地反映马铃薯的氮营养状况。 (3)马铃薯5个生育期, OFFP估算PNC的效果优于OGEP。 (4)与单参数模型相比, 基于GEPs和FFPs利用PLSR和ANN 2种方法构建的模型精度和稳定性均明显提高, 其中, 以FFPs为模型因子利用ANN方法构建的模型效果最好。 该研究表明融合高光谱绿边参数和高清数码相机传感器提取的株高和覆盖度信息能显著提升PNC的估算精度, 可为马铃薯氮营养状况的动态无损监测和多源传感器信息的应用提供参考。
植株氮含量 无人机 多源传感器 绿边 株高 覆盖度 Plant nitrogen content UAV Multi-source sensor Green edge Plant height Coverage 
光谱学与光谱分析
2022, 42(10): 3217
刘杨 1,4,5张涵 2冯海宽 1,3,5孙乾 1,5[ ... ]杨贵军 1,5
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室,北京农业信息技术研究中心,北京 100097
2 University of New South Wales,Sydney NSW 2052,Australia
3 南京农业大学国家信息农业工程技术中心,江苏 南京 210095
4 山东科技大学测绘科学与工程学院,山东 青岛 266590
5 国家农业信息化工程技术研究中心,北京 100097
地上生物量(AGB)的精准监测是农田生产管理的重要环节, 因此快速准确地估算AGB, 对于精准农业的发展十分重要。 传统上, 获取AGB的方法是采用破坏性取样法, 这使得大面积、 长期的测量变得困难。 无人机高光谱遥感因具有机动性强、 光谱分辨率高和图谱合一的优势, 成为当前估算大面积作物AGB最有效的技术手段。 该研究通过无人机平台搭载成像高光谱传感器分别获取马铃薯块茎形成期、 块茎增长期、 淀粉积累期的冠层高光谱影像以及利用烘干称重法获取相应生育期实测AGB数据。 然后, 采用相关性分析法(CAM)、 随机蛙跳算法(RFM)和高斯过程回归波长分析工具(GPR-BAT)分别筛选冠层原始光谱(COS)和一阶导数光谱(FDS)的敏感波长, 结合偏最小二乘回归(PLSR)和高斯过程回归(GPR)构建各生育期的AGB估算模型, 并对比不同模型的估测效果。 结果显示: (1)基于同种方法分别筛选COS和FDS的特征波长, 结合2种回归技术估算AGB的效果均从块茎形成期到淀粉积累期由好变差。 (2)基于FDS分别通过3种方法筛选的特征波长, 通过同种回归技术构建的模型效果要优于基于COS的相应效果。 (3)基于COS和FDS使用CAM, RFM和GPR-BAT方法筛选的特征波长个数在块茎形成期分别为28, 12, 6个和12, 23, 10个, 在块茎增长期分别为32, 8, 2个和18, 28, 4个, 在淀粉积累期分别为30, 15, 3个和21, 33, 5个。 (4)各生育期基于COS和FDS通过3种方法筛选的敏感波长估算AGB效果由高到低依次均为GPR-BAT, RFM和CAM。 (5)各生育期基于FDS通过GPR-BAT方法筛选的敏感波长, 结合PLSR建立的模型精度更高、 稳定性更强, R2分别为0.67, 0.73和0.65, NRMSE分别为16.63%, 15.84%和20.81%。 研究表明利用无人机高光谱成像技术可以准确地估算AGB, 这为实现马铃薯作物长势动态监测, 提供科学指导和参考。
马铃薯 无人机 成像高光谱 随机蛙跳 高斯过程回归 地上生物量 Potato UAV Imaging hyperspectral Random frog Gaussian process regression Above-ground biomass 
光谱学与光谱分析
2021, 41(9): 2657
刘杨 1,2,4孙乾 1,4黄珏 2冯海宽 1,3,4[ ... ]杨贵军 1,4
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室,北京农业信息技术研究中心,北京 100097
2 山东科技大学测绘科学与工程学院,山东 青岛 266590
3 南京农业大学国家信息农业工程技术中心,江苏 南京 210095
4 国家农业信息化工程技术研究中心,北京 100097
地上生物量(AGB)是评估作物生长发育和指导田间农业生产管理的重要指标。 因此, 高效精准地获取作物AGB信息, 可以及时准确地估算产量, 对于保障粮食供应和贸易提供有力依据。 传统获取AGB的方法是采用破坏性取样法, 这使得大面积、 长期的测量变为困难。 然而, 随着精准农业的快速发展, 无人机遥感技术被认为是估算大面积作物AGB最有效的技术方式。 通过无人机平台搭载多光谱传感器获取马铃薯块茎形成期、 块茎增长期和淀粉积累期的多光谱影像, 地面实测株高和AGB以及地面控制点(GCP)的空间位置信息。 首先, 基于SFM(structure from motion, SFM)技术利用无人机影像数据结合GCP的三维坐标生成试验田的DSM(digital surface model, DSM), 通过DSM提取出马铃薯各生育期的株高(Hdsm); 然后, 选取原始4个单波段植被指数、 9个多波段组合的植被指数、 红边波段的高频信息(HFI)和提取的Hdsm分别与AGB作相关性分析; 最后基于单波段植被指数(x1)、 多波段组合的植被指数(x2)、 植被指数结合Hdsm(x3)、 植被指数结合HFI(x4)以及植被指数融合HFI和Hdsm(x5)为模型输入参数, 采用偏最小二乘回归(PLSR)和岭回归(RR)估算各生育期的AGB。 结果表明: (1)提取的Hdsm和实测株高拟合的R2为0.87, NRMSE为14.34%; (2)各模型参数都与AGB达到极显著水平, 相关性均从块茎形成期到淀粉积累期先升高后降低; (3)各生育期以5种变量使用同种方法估算马铃薯AGB的效果, 均从块茎形成期到淀粉积累期先好后变差, 其估算精度由高到低依次为x5>x4>x3>x2>x1; (4)各生育期使用PLSR以不同变量估算AGB的效果要优于RR方法, 其中在块茎增长期基于x5变量估算马铃薯AGB效果最佳, R2为0.73, NRMSE为15.22%。 因此, 选取多光谱植被指数结合红边波段的高频信息和Hdsm并使用PLSR方法可以明显提高AGB的估算精度, 这为大面积马铃薯作物AGB的监测提供了新的技术支撑。
马铃薯 多光谱 株高 植被指数 高频信息 地上生物量 Potato Multispectral Plant height Vegetation indices High frequency information Above ground biomass 
光谱学与光谱分析
2021, 41(8): 2549
张东彦 1戴震 1,2徐新刚 2,*杨贵军 2[ ... ]姜飞 1,3
作者单位
摘要
1 安徽大学 农业生态大数据分析与应用技术国家地方联合工程技术研究中心,安徽 合肥 230601
2 北京农业信息技术研究中心,北京 100097
3 宿州学院 信息工程学院,安徽 宿州 234000
快速、准确地掌握作物空间分布,估算不同作物种植面积及范围,这对制定宏观农业政策并指导农民进行农业生产具有重要意义。以我国内蒙古自治区扎赉特旗现代农业示范园区为研究区域,基于2019年5月至10月共9景多时相Sentinel-2卫星遥感影像,通过计算并分析不同作物归一化差值植被指数(NDVI)、比值植被指数(RVI)、增强型植被指数(EVI)等多种典型植被指数和近红外波段Ref(NIR)的时序变化特征,采用随机森林(Random Forest, RF)、决策树(Decision Tree, DT)、支持向量机(Support Vector Machine, SVM)和最大似然法(Maximum Likelihood, ML)4种分类方法对研究区多种作物进行分类识别,成功提取园区内主要作物(水稻、玉米、甜叶菊、旱稻和大豆等)空间分布情况。将RF结果与DT、SVM和ML分类结果对比,结果显示,RF总体分类精度最高,达到95.8%,Kappa系数为0.944;DT、SVM和ML分类精度分别为92.2%、91.6%和86.5%。上述研究结果表明,多时相Sentinel-2遥感影像经过光谱指数时序变化特征提取后,利用随机森林算法进行作物分类可得到精度较高的结果,这为精细指导规模化园区农业生产提供了有效的技术支持。
随机森林算法 近红外波段 时间序列 Sentinel-2 作物分类 random forest Ref (NIR) time-series Sentinel-2 crop classification 
红外与激光工程
2021, 50(5): 20200318
王娇娇 1,2,*宋晓宇 1梅新 2杨贵军 1[ ... ]孟炀 1
作者单位
摘要
1 农业部农业遥感机理与定量遥感重点实验室, 北京农业信息技术研究中心, 北京 100097
2 湖北大学资源环境学院, 湖北 武汉 430062
水稻氮素含量的准确监测是稻田精准施肥的重要环节, 水稻叶片氮素含量发生变化会引起叶片、 冠层的光谱发射率发生变化, 高光谱遥感是目前作物氮素无损监测的关键技术之一。 以2018年—2019年湖北监利两年水稻氮肥试验为基础, 分别获取水稻分蘖期、 拔节期、 孕穗期、 扬花期、 灌浆期五个生育期水稻叶片和冠层两个尺度的高光谱反射率数据及对应的叶片氮素含量数据, 利用单波段原始光谱和一阶导数光谱的相关性分析、 高斯过程回归(GPR)等方法筛选水稻全生育期叶片及冠层尺度氮素敏感波段。 针对敏感波段, 利用单波段回归分析、 随机森林(RF)、 支持向量回归(SVR)、 高斯过程回归-随机森林(GPR-RF)、 高斯过程回归-支持向量回归(GPR-SVR)和GPR构建水稻氮素监测模型, 并进行精度对比, 以确定水稻叶片在各生育期的氮素估算最佳模型。 结果表明: GPR筛选的敏感波段符合水稻氮素含量及光谱变化的规律。 相同条件下, 叶片模型精度整体高于冠层模型。 相关性分析模型中, 叶片尺度原始光谱模型更好, 冠层尺度刚好相反, 冠层一阶导数光谱可以减弱稻田背景噪声的影响。 其中, 叶片最佳模型建模集R2为0.79, 验证集R2为0.84; 冠层最佳模型建模集R2为0.80, 验证集R2为0.77。 与相关性回归分析模型相比, 机器学习模型受生育期影响小(R2>0.80, NRMSE<10%)。 其中, RF比SVR更适合对GPR敏感波段建模, GPR-RF模型可以用1.5%左右的波段达到RF模型使用全部波段的精度。 五种方法中, GPR模型对生育期敏感度最低、 叶片及冠层尺度效果都很好(R2>0.94, NRMSE<6%)。 且与其他四种机器学习方法相比, GPR模型可有效提高冠层氮素含量估算的精度和稳定性(R2增加0.02, NRMSE降低1.2%)。 GPR方法可为筛选作物氮素高光谱敏感波段、 反演各生育期叶片及冠层氮素含量提供方法参考。
敏感波段 氮素 高斯过程回归 随机森林 支持向量回归 高光谱 Sensitive band Nitrogen Gaussian progresses regression (GPR) Random forest (RF) Support vector regression (SVR) Hyperspectral 
光谱学与光谱分析
2021, 41(6): 1722

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!