作者单位
摘要
安徽工业大学机械工程学院, 安徽 马鞍山 243032
采用波长为1064 nm、脉冲宽度约为10 ns的激光束对304不锈钢进行双面冲击强化处理(LSP), 利用三维形貌仪观察LSP试样的表面形貌, 采用X射线应力仪测量试样表面的残余应力; 采用伺服液压疲劳试验机对试样进行疲劳试验, 以得到疲劳裂纹扩展速率曲线; 采用扫描电子显微镜观察试样裂纹扩展不同阶段的断口形貌。结果表明:激光冲击强化处理可使试样表面产生最大变形量约为25 μm的塑性变形, 形成最大值为-218 MPa的残余压应力, 并可使裂纹源向试样内部转移; 激光冲击强化能显著降低冲击区域处的裂纹扩展速率。基于疲劳裂纹扩展速率曲线再次验证了激光冲击处理可显著提高304不锈钢的抗疲劳性能。
激光技术 激光冲击强化 304不锈钢 微观形貌 残余应力 疲劳寿命 
中国激光
2019, 46(1): 0102003
作者单位
摘要
安徽工业大学机械工程学院, 安徽 马鞍山 243032
利用三维有限元技术模拟预测激光单次冲击圆杆件诱导的残余应力场,并与实验结果比较,残余应力场的预测值与实验测量值一致性较好。探讨了激光功率密度、冲击角度以及冲击次数等激光参数对残余应力场的影响。结果表明,在激光冲击圆杆件过程中,激光功率密度越大,光斑中心区域的残余压应力越小,残余应力状态最终由残余压应力变为残余拉应力;光斑中心区域的残余压应力随冲击角度的增大而增大;冲击次数在一定阈值范围内时,光斑中心的残余压应力增幅显著,之后逐渐趋于饱和。塑性强化层深度随激光功率密度和冲击次数的增加而增大,激光冲击角度对塑性强化层深度几乎没有影响。
激光技术 残余应力 有限元分析 圆杆件 塑性强化层深度 
中国激光
2016, 43(8): 0802007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!