作者单位
摘要
浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
利用高光谱成像技术结合化学计量学方法对油菜中的杂草进行分类识别。 采用近红外高光谱技术, 通过正态变量变换(SNV)、 去趋势化(De-trending)、 多元散射校正(MSC)、 移动平均平滑法(MA)、 多项式卷积平滑法(SG)、 基线校正(baseline)及归一化(normalize)算法对光谱数据进行预处理, 采用主成分载荷(PCA loadings)、 载荷系数法(x-LW)、 回归系数法(RC)、 连续投影算法(SPA)分别进行特征波长提取, 采用偏最小二乘判别分析(PLS-DA)、 极限学习机(ELM)和支持向量机(SVM)建立分类模型。 结果表明, 基于De-trending 预处理, 通过PCA loadings, x-loading weights及SPA特征波长提取方法, 基于极限学习机ELM算法建立的模型取得了最优的分类效果, 建模集和预测集的分类精度均达到100%, 另引入平均分类精度的指标, 发现不同试验时间下, 模型分类精度变化不大, 表明应用近红外高光谱成像技术对油菜和杂草进行分类是可行的。
高光谱 油菜 杂草 极限学习机 分类 Hyperspectral image Oilseed rape Weed ELM Classification 
光谱学与光谱分析
2017, 37(11): 3567

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!