Author Affiliations
Abstract
1 Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
2 Laboratory of Infrared Materials and Devices, Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
3 Laser Physics Center, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia
4 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
5 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Reliable generation of single photons is of key importance for fundamental physical experiments and quantum protocols. The periodically poled lithium niobate (LN) waveguide has shown promise for an integrated quantum source due to its large spectral tunability and high efficiency, benefiting from the quasi-phase-matching. Here we demonstrate photon-pair sources based on an LN waveguide periodically poled by a tightly focused femtosecond laser beam. The pair coincidence rate reaches ∼8000 counts per second for average pump power of 3.2 mW (peak power is 2.9 kW). Our results prove the possibility of application of the nonlinear photonics structure fabricated by femtosecond laser to the integrated quantum source. This method can be extended to three-dimensional domain structures, which provide a potential platform for steering the spatial degree of freedom of the entangled two-photon states.
photon pair spontaneous parametric downconversion femtosecond laser lithium niobate waveguide quasi-phase matching 
Chinese Optics Letters
2023, 21(4): 042701
作者单位
摘要
南京大学 物理学院 固体微结构物理国家重点实验室,南京 210093
作为表征光具有振动偏向性的本征参量,一直以来偏振都是光场空域调控中重要的研究对象。相较于传统标量光场,具有偏振非均匀分布的矢量光场强调了这种振动偏向性会存在空间差异。早期研究者对矢量光场的调控研究仅限于单个二维平面,主要实现单一偏振参量的模式控制;在此基础上研究人员又对其振幅与相位进行控制,实现了涵盖三个基本调控自由度的多模态矢量光场生成。近年来随着多模态矢量光场在光信息传输、焦场设计、光学微操纵等领域的深度应用,其调控效率的提高与调控维度的纵向延伸两方面研究内容备受关注。研究人员一方面减少调控过程中不必要的能量损耗,另一方面对多模态矢量光场在三维空间中的的空间构型与传播演化过程进行了研究,总结了纵向变化规律,阐明了纵向调控机制,论证了纵向调控可行性。本文回顾了近年来多模态矢量光场的三维空域调控研究进展,首先介绍了数个近年来提出的具有高效化、紧凑化特点的新型矢量场生成装置;之后概述了三种目前相对有效的可实现三维空域多模态控制的矢量场调控方法及其相关调控案例,第一种方案考虑衍射过程,后两种方案则适用于聚焦过程;最后进行了简要总结与展望。
物理光学 偏振态 矢量光场 多模态调控 三维空域 光场调控 Physical optics Polarization Vector optical field Multimodal manipulation Three-dimensional space Optical field modulation 
光子学报
2022, 51(1): 0151101
汪喜林 1,*刘志峰 1高小钦 2李浩 1[ ... ]王慧田 1,**
作者单位
摘要
1 南京大学固体微结构物理国家重点实验室, 南京大学物理学院, 人工微结构科学与技术协同创新中心, 江苏 南京 210093
2 渥太华大学物理系, 加拿大 渥太华, K1N 6N5

作为光子重要自由度之一,轨道角动量(OAM)在光量子信息研究中占据着重要地位。将其与偏振等光子的其他自由度相结合,可实现多自由度光量子信息处理。此外,由于其具有天然的离散高维属性,故其是开展高维量子信息处理研究的最佳自由度之一。基于自发参量下转换非线性光学过程能够便捷地获得OAM纠缠源。近年来,光子OAM量子纠缠的研究受到了广泛关注,在多自由度、高维和多光子等多个方向都取得了重要进展。然而,该领域尚有诸多悬而未决的关键科学问题亟须深入研究,包括如何实现高效高质的OAM分离,如何实现更高维度的频率转换,如何提升多自由度纠缠源的品质,如何获得更多维度、更多光子的高维纠缠态以及如何构建可行的高维量子门等。从光子OAM最基本的二维操纵着手,综述了单光子OAM量子态调控、双光子及多光子OAM纠缠操纵。围绕多自由度、大角动量和高维等特性,从生成、调控、测量及应用等角度系统讨论了光子OAM量子纠缠。同时,探索了解决本方向关键科学问题的一些可能解决途径。

量子光学 量子信息 光子轨道角动量 自发参量下转换 量子纠缠 多自由度纠缠 高维量子纠缠 
光学学报
2022, 42(3): 0327012
Author Affiliations
Abstract
1 School of Physics and Key Laboratory of Weak Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
2 Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
5 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Micromachining based on femtosecond lasers usually requires accurate control of the sample movement, which may be very complex and costly. Therefore, the exploration of micromachining without sample movement is valuable. Herein, we have illustrated the manipulation of optical fields by controlling the polarization or phase to vary periodically and then realized certain focal traces by real-time loading of the computer-generated holograms (CGHs) on the spatial light modulator. The focal trace is composed of many discrete focal spots, which are generated experimentally by using the real-time dynamically controlled CGHs. With the designed focal traces, various microstructures such as an ellipse, a Chinese character “Nan”, and an irregular quadrilateral grid structure are fabricated in the z-cut LiNbO3 wafers, showing good qualities in terms of continuity and homogeneity. Our method proposes a movement free solution for micromachining samples and completely abandons the high precision stage and complex movement control, making microstructure fabrication more flexible, stable, and cheaper.
manipulation of optical fields computer-generated holograms focal trace microstructures 
Chinese Optics Letters
2022, 20(1): 010502
Author Affiliations
Abstract
National Laboratory of Solid Microstructure and School of Physics, Nanjing University, Nanjing 210093, China
We develop a method for completely shaping optical vector beams with controllable amplitude, phase, and polarization gradients along three-dimensional freestyle trajectories. We design theoretically and demonstrate experimentally curvilinear Poincaré vector beams that exhibit high intensity gradients and accurate state of polarization prescribed along the beam trajectory.
laser beam shaping polarization diffraction 
Chinese Optics Letters
2021, 19(3): 032602
Author Affiliations
Abstract
1 School of Physics and Physical Engineering, Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Qufu Normal University, Qufu 273165, China
2 School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
3 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Orbital angular momentum (OAM), as a fundamental parameter of a photon, has attracted great attention in recent years. Although various properties and applications have been developed by modulating the OAM of photons, there is rare research about the non-uniform OAM. We propose and generate a new kind of continuously tunable azimuthally non-uniform OAM for the first time, to the best of our knowledge, which is carried by a hybridly polarized vector optical field with a cylindrically symmetric intensity profile and a complex polarization singularity. We also present the perfect vector optical field carrying non-uniform OAM with a fixed radius independent of topological charges, which can propagate steadily without radial separation, solving the problem of the unsteady propagation due to the broadened OAM spectrum of the non-uniform OAM. This new kind of tunable non-uniform OAM with a cylindrical symmetric intensity profile, complex polarization singularity, and propagation stability enriches the family of OAMs and can be widely used in many regions such as optical manipulation, quantum optics, and optical communications.
orbital angular momentum vector optical field singular optics phase singularity polarization singularity 
Chinese Optics Letters
2020, 18(12): 122601
Author Affiliations
Abstract
1 Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
2 National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Optical orbital angular momentum (OAM) is a special property of photons and has evoked research onto the light–matter interaction in both classical and quantum regimes. In classical optics, OAM is related to an optical vortex with a helical phase structure. In quantum optics, photons with a twisted or helical phase structure will carry a quantized OAM. To our knowledge, however, so far, no experiment has demonstrated the fundamental property of the OAM at the single-photon level. In this Letter, we have demonstrated the average photon trajectories of twisted photons in a double-slit interference. We have experimentally captured the double-slit interference process of twisted photons by a time-gated intensified charge-coupled device camera, which is trigged by a heralded detection. Our work provides new perspectives for understanding the micro-behaviors of twisted particles and enables new applications in imaging and sensing.
orbital angular momentum double-slit interference twisted photons helical phase 
Chinese Optics Letters
2020, 18(10): 102601
Author Affiliations
Abstract
1 School of Physics and Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin 300071, China
2 National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
In free-space or in optical fibers, orbital angular momentum (OAM) multiplexing for information transmission has been greatly developed. The light sources used were well coherent communication bands, and the fibers used were customized. Here, we use an 810 nm femtosecond laser to generate optical vortices carrying OAM and then feed them into two kinds of commercial step-index few-mode fibers to explore the transmission characteristics of OAM modes. We also propose a method without multiple-input multiple-output digital signal processing to identify the input OAMs. It is of great guiding significance for high-dimensional quantum information experiments via the OAMs as a degree of freedom, using the light generated by the spontaneous parametric down-conversion as the source and the commercial fibers for information transmission.
060.2310 Fiber optics 050.4865 Optical vortices 080.4865 Optical vortices 
Chinese Optics Letters
2019, 17(12): 120601
潘岳 1,3,*丁剑平 2王慧田 1,2,*
作者单位
摘要
1 南开大学物理科学学院,弱光非线性光子学教育部重点实验室, 天津 300071
2 南京大学固体微结构物理国家重点实验室,人工微结构科学与技术协同创新中心, 江苏 南京 210093
3 曲阜师范大学物理工程学院,山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
作为光的一个基本属性,偏振态提供的自由度对光场调控具有重要作用。具有空间结构偏振态分布的矢量光场因其具有不同于传统标量光场的独特性质而被应用于诸多领域,但矢量光场的早期研究主要集中于柱对称的局域线偏振矢量光场。近年来,偏振态分布更加丰富的新型矢量光场逐渐得到关注,这些新型矢量光场的出现丰富了矢量光场的种类并提供了新的调控自由度,被应用于焦场调控、光学微加工、光学微操纵和光信息传输等领域。综述了近年来出现的新型矢量光场,包括柱坐标系中的杂化偏振矢量光场、庞加莱球相关的矢量光场、阵列矢量光场、多奇点矢量光场和其他非柱对称的矢量光场,介绍了其进展、设计方案、实验生成、性质和相关应用。
物理光学 偏振态 矢量光场 光场调控 庞加莱球 奇点 
光学学报
2019, 39(1): 0126001
Author Affiliations
Abstract
1 MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
2 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
3 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Transporting information is one of the important functions of photons and is also the essential duty of information science. Here, we realize multiple imaging by detecting photons with changeable wavelengths based on time-resolved correlation measurements. In our system, information from multiple objects can be transported. During this process, the wavelength of the photons illuminating the objects is different from the wavelength of the photons detected by the detectors. More importantly, the wavelength of the photons that are utilized to record images can also be changed to match the sensitive range of the used detectors. In our experiment, images of the objects are reconstructed clearly by detecting the photons at wavelengths of 650, 810, and 1064 nm, respectively. These properties should have potential applications in information science.
110.4190 Multiple imaging 110.6915 Time imaging 
Chinese Optics Letters
2017, 15(8): 081101

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!