作者单位
摘要
1 上海烟草集团有限责任公司技术中心, 上海 200082
2 上海真谱信息科技有限公司, 上海 200444
3 同济大学环境科学与工程学院, 上海 200092
分别基于近红外和电子鼻融合数据、 近红外数据以及电子鼻数据建立判别烟叶清香型、 中间香型和浓香型三种香型风格的定性判别模型, 结果表明虽然三种模型的建模准确率差异不大, 都超过了89.00%, 但基于融合数据建立的模型对中间香型和浓香型的预报准确率分别为82.67%和80.00%, 比仅仅利用近红外数据建立模型的72.41%和73.33, 也比仅仅基于电子鼻数据建立模型的68.97%和53.33%都有明显的提高。 融合后预报准确率提高的可能原因是: 电子鼻风味分析仪对于影响中间香型和浓香型的烟叶致香成分感应更加灵敏, 捕获的信息也更多, 这些新的信息可以作为NIR数据信息的有利补充, 可用于建立烟叶香型分类判别准确率更高的模型。 同时本研究还基于相同的融合数据, 对比不同数据挖掘算法建模和预报结果差异性。 实验结果表明: 人工神经网络的建模结果高于支持向量机建模, 人工神经网络模型的预报结果准确率只有65.00%, 远低于支持向量机模型的预报结果的83.75%。 这也验证了支持向量机算法可以在建模过程中减少过拟合。 该研究可以为快速鉴别烟叶香型风格提供支撑, 而且随着研究的深入可以争取为烟草系统的专业评吸人员提供辅助的鉴别方法。英文标题>Discriminating Flavor Styles via Data Fusion of NIR and EN
近红外 电子鼻 香型风格 数据融合 NIR EN Fragrance style Data fusion 
光谱学与光谱分析
2023, 43(1): 133
作者单位
摘要
1 山西农业大学农业工程学院, 山西 太谷 030801
2 山西农业大学谷子研究所, 山西 长治 046000
3 西北农林科技大学机械与电子工程学院, 陕西 杨凌 712100
小米米粉的主要成分是淀粉, 其食味品质决定小米米粉的市场价值。 糊化特性是小米米粉的重要物理特性, 而碱消值是能够直接反应其糊化特性的主要特征指标。 通过小米米粉碱消值的差异, 可以间接反映直链淀粉含量, 当碱消值降低时, 相反, 糊化温度和直链淀粉含量却很高, 而小米米粉口感粘糯性越差。 采用高光谱技术结合化学计量学方法, 建立快速检测小米米粉碱消值预测模型, 旨在探索一种快速、 无损、 低成本预测小米米粉碱消值的方法。 实验采集小米米粉高光谱数据, 在被测样品感兴趣区域(ROI)按像素点逐一选择, 提取高光谱数据矩阵, 并进行均值运算, 得到每个样品在各个光谱波段的平均光谱值。 利用粘度测定仪(RVA)测定小米米粉碱消值指标。 光谱数据采用全波段、 竞争性自适应重加权采样法(CARS)及随机蛙跳(RF)法选择特征波段处理, 建立偏最小二乘回归(PLSR)模型; 全波段建立预测模型Rp值最高为0.77, 说明能够利用小米米粉高光谱反射率反演小米米粉的碱消值, 而采用其他两种计算方法所得Rp值分别为0.72和0.7, 与前者较为接近, 也反映了采用CARS和RF建立的回归模型具有可行性。 为提高预测精度, 采用Savitzky-Golay(S-G)法、 多元散射校正(MSC)和S-G+MSC对数据预处理。 可以看出采用MSC预处理光谱数据建立PLSR模型性能较好(Rp=0.83)。 对MSC预处理后的数据再次CARS和RF法选择特征波段, 建立PLSR模型, 与未进行预处理的回归模型相比, Rp值变化不大, 这也说明CARS和RF具有一定的稳定性, 可以作为小米米粉高光谱反射率预测碱消值的参考方法。 结果表明: 为实现对小米米粉碱消值的快速、 无损检测, 通过运用高光谱技术能够利用小米米粉高光谱反射率预测碱消值, 进而为小米米粉品质评级、 加工及碱消值传感器的开发提供参考依据和数据支撑。
高光谱 小米米粉 碱消值 化学计量学方法 Hyperspectral Mellet of flour The alkali spreading value Chemometrics methods 
光谱学与光谱分析
2021, 41(10): 3189
作者单位
摘要
1 山西农业大学工学院, 山西 太谷 030801
2 山西农业大学文理学院, 山西 太谷 030801
精细农业变量施肥取决于对农田的土壤养分分布的了解, 快速获取土壤信息是实施精细农业的基础。 速效钾是土壤肥力的重要参数, 是植物生长发育所必需的营养元素。 对土壤速效钾含量进行测量, 是了解土壤肥力的重要途径, 是实现精细农业的必要条件。 以山西典型褐土土壤为研究对象, 采集农田耕层褐土土壤样品共169份, 样品经风干处理, 手动捏碎较大的土粒并去除杂质后, 未经研磨过筛处理而直接用于土壤近红外高光谱的测量。 根据实验室速效钾含量测定结果, 将所有土壤样品分为两类: 其中速效钾含量低于100 mg·kg-1的样品共144个, 随机选取108个作为低含量建模集(Lc), 剩余36个作为低含量验证集(Lp); 速效钾含量高于100 mg·kg-1的样品共25个, 随机选取19个作为高含量建模集(Hc), 剩余6个作为高含量验证集(Hp)。 其中Lc和Hc统称为所有含量建模集(Tc), Lp和Hp统称为所有含量验证集(Tp)。 获取所有土壤样本950~1 650 nm范围内的近红外高光谱图像。 分别采用平均光谱曲线(R)、 平均光谱曲线的一阶导数(FD)、 平均光谱曲线与一阶导数共同建模(R&FD)、 平均光谱曲线与一阶导数的乘积(R*FD)、 平均光谱曲线与一阶导数的商(R/FD)等五种光谱数据预处理方法, 结合偏最小二乘法(PLS), 分别对建模集Tc, Lc及Hc建模, 然后分别对验证集Tp, Lp及Hp进行验证。 结果表明: 土壤的平均光谱反射率随速效钾含量的增大呈现先增加后减小的趋势。 当速效钾含量低于100 mg·kg-1时, 所有波段的光谱反射率随速效钾含量的增加而增加; 当速效钾含量在100~200 mg·kg-1之间时, 所有波段的光谱反射率均达到最大值。 当速效钾含量超过200 mg·kg-1时, 950~1 400 nm的光谱反射率急剧减小, 但曲线的整体斜率显著增加; 且速效钾含量越高, 曲线整体斜率越大。 当速效钾含量高于100 mg·kg-1时, 平均光谱曲线的一阶导数显著增大, 且随速效钾含量的增加而增加。 该研究建立的PLS模型, 可以对整体(所有速效钾含量)和高含量(≥100 mg·kg-1)速效钾进行有效预测, 但无法对低含量(≤100 mg·kg-1)速效钾进行预测。 建模效果最好的光谱预处理方法为R*FD, 其次为FD, R, 而R&FD, R/FD预测效果相对较差。 最优建模方式为: R*FD结合Tc建模, 其PLS主因子个数为2个, RMSEc=29.293, RPDc=4.669, R2c=0.956; 对Tp的验证效果为RMSEp=29.438, RPDp=4.740, R2p=0.958; 对Hp的验证效果为RMSEp=23.033, RPDp=3.199, R2p=0.915。 该模型能够根据土壤速效钾的含量对土壤进行分类: 当预测值小于100 mg·kg-1时, 表明土壤速效钾含量低于100 mg·kg-1, 具体含量不确定; 当预测值大于100 mg·kg-1时, 预测值则能够很好反映土壤速效钾的真实含量。 由于选用的土壤样本未经研磨和过筛处理, 因而能够大大缩短样本制备时间, 提高预测效率。 该研究结果可为近红外高光谱成像应用于褐土土壤除速效钾含量以外其他营养成份的快速预测提供参考。
近红外 高光谱成像 速效钾 偏最小二乘 Near infrared Hyperspectral imaging Available potassium Partial least square 
光谱学与光谱分析
2019, 39(5): 1579

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!